首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
基于MET检验工具对乌鲁木齐区域数值天气预报系统DOGRAFS v1.0在2016年各季节中的预报性能进行客观检验评估,主要检验要素有2m温度、10m风、500hPa形势场等,并与2015年同期预报性能进行对比分析,结果表明:(1)2016年该系统对各个季节2m温度预报以冷偏差为主,午间偏低幅度较大;夏季性能最优,冬季性能最差。对10m风预报以正偏差为主,平均误差在1.0m/s以内;各季节预报性能无明显差异。(2)2016年该系统对500hPa位势高度和温度预报以负偏差为主;位势高度预报性能夏季最优、秋季最差;温度预报性能在夏季最优、冬季最差。24h预报时效的预报性能整体优于48h预报时效。(3)2016年晴雨预报效果较好,夏季降水评分最高、冬季最低。随降水阈值增大、TS评分降低,系统对夏季午后至夜间降水预报评分较高。(4)2015年各要素预报偏差的变化特征与2016年相似,2016年预报性能整体优于2015年。  相似文献   

2.
基于乌鲁木齐区域数值预报业务系统,运用MET检验工具,对2017年各季节DOGRAFSv1.0预报性能进行客观检验。结果表明:(1)2m温度日间预报温度整体偏低,夜间多数站点预报温度偏高;冬季预报温度偏高,其他三个季节温度预报整体偏低。10m风速冬季模拟性能最差,春季次之;所有季节风速预报均偏大。(2)夏季、秋季高空温度预报误差小,在3.0℃以内,冬季误差最大,温度预报整体呈冷偏差;不同季节高空位势高度随高度增加误差增大,误差约在6.5~12.0gpm,预报高度比实际高度偏低;不同季节高空U、V风随高度增加误差先增大后减小,均方根误差分别为2.4~6.2m/s和1.8~5.2m/s,U风预报整体比实况偏小,V风预报整体比实况偏大。(3)冬季大阈值降水漏报率较高,12.1mm阈值降水Bias评分仅为0.2,秋季大阈值降水空报率较高,12.1mm阈值降水Bias评分在2.0以上,夏季空、漏报率较低;在新疆地区,四个时段中14~20 BJT 、20~次日02 BJT空报站点数多于漏报,14~20 BJT空报率最高,02~08 BJT漏报率最高,08~14BJT晴雨预报以漏报为主;日间Ts评分高于夜间。  相似文献   

3.
GRAPES_Meso V3.0模式预报效果检验   总被引:4,自引:1,他引:3       下载免费PDF全文
王雨  李莉 《应用气象学报》2010,21(5):524-534
应用国家气象中心模式检验方法对GRAPES_Meso V3.0模式2008年2月-2009年3月的试验预报产品,如降水、中低层高度、温度和风场预报进行统计检验。检验结果表明:V3.0模式降水预报性能得到明显改善,年及四季平均的各级降水TS评分显著提高,除了秋、冬季的48h中雨和暴雨预报外,TS评分明显高于V2.5模式,但V3.0模式的预报偏差偏大,中雨以上偏大更明显。从预报的季节平均降水率分布来看,对秋、冬季我国东部24h降水预报偏小改进明显,对春、夏季强降水中心位置及强度预报也好于V2.5模式,但是48h降水预报明显偏大,逐日降水率演变图也印证了这一点。此外,V3.0模式对500hPa高度和风场及48h预报的850hPa风场和温度场改进显著,对于850hPa高度和温度的24h预报,除夏季外,其他季节预报效果优于业务模式。  相似文献   

4.
利用FINE ECMWF模式逐日分析场(0场)序列和10d预报场序列,使用气候学方法客观检验FINEECMWF模式对南海10米风速的预报能力,主要结果如下:(1)模式对南海10米风速具有较高的预报性能,并且不同季节和不同海区具有不同的预报性能.(2)随着预报时效的增加,均方根误差线性增长.不同季节均方根误差最小的是春季,其次是冬季,最大的是夏季和秋季.随着预报时效的增加,15°以北海区的误差增长最快.广东沿海西部海区、北部湾和海南岛西南部在各个季节各个预报时次都是相对大值区.(3)随着预报时效的增加,ACC逐渐减小.不同季节预报效果最好的是春季和冬季,其次是秋季,最差的是夏季.随着预报时效的增长,春季和夏季ACC的大值区主要出现在海区的南部,秋季的大值区分布在海区的南部和北部,冬季的大值区主要分布在海区的中北部.  相似文献   

5.
为了提升新疆区域数值天气预报模式的精细化预报能力,引进北京城市气象研究院运行的快速更新多尺度分析和预报系统睿图,搭建3 km高分辨率的睿图—中亚系统(Rapidrefresh Multi-scale Analysis and Prediction System-Central Asia,简称RMAPS-CA),将2017年1月和7月作为预报检验月份,对比分析了新搭建的RMAPS-CA系统与目前业务运行的沙漠绿洲戈壁区域同化预报系统(Desert Oasis Gobi Regional Assimilation Forecast System,简称DOGRAFS)的短期、短临预报效果,并针对2017年6月6—7日的降水过程进行对比。结果表明:(1)从高空的位势高度、温度、风要素预报结果看,RMAPS-CA系统冬季在中低层效果优于DOGRAFS系统,高层略差于DOGRAFS系统;而夏季的预报效果整体要优于DOGRAFS。(2)RMAPS-CA系统的2 m温度的预报效果整体要优于DOGRAFS系统,10 m风速的预报效果冬季要优于DOGRAFS,夏季略差于DOGRAFS。(3)降水检验看,RMAPS-CA系统在降水时段、落区和量级等方面的效果均优于DOGRAFS系统,尤其是对小量和大量级降水的预报。(4)从强降水过程的降水落区、强度以及站点降水预报的对比分析看,RMAPS-CA系统的降水预报效果更好。根据2017年代表月份的预报以及一次强降水过程的对比分析,RMAPS-CA系统的预报性能整体上优于DOGRAFS,可以在此基础上推进RMAPS-CA高分辨率系统建设。  相似文献   

6.
安徽省ECMWF数值模式降水预报性能的检验   总被引:1,自引:0,他引:1  
为了了解欧洲中期天气预报中心(European Centre for Medium-range Weather Forecasts,ECMWF)数值模式对安徽地区降水预报的性能,提高订正技巧,本文应用风险评分(Threat Score,TS)、预报偏差(BIAS)和去除随机事件后的公平T评分(Equitable Threat Score,ETS)及真实技巧评分(True Skill Statistic,TSS)等方法,对2012年1月至2015年3月安徽省ECMWF数值模式降水场预报资料进行检验。结果表明:ECMWF模式对安徽地区降水的预报性能总体较稳定,年际变化幅度较小。安徽省降水预报的ETS评分总体呈南高北低的空间分布特征,所有气象站降水均存在预报过度的现象。降水预报分级检验表明,小雨量级降水预报评分明显高于其他量级降水,但预报偏差较大,预报过度现象严重;ECMWF模式对72 h时效内的暴雨量级降水预报技巧较小,对于72 h时效后的暴雨量级降水基本没有预报能力。季节降水预报的检验表明,春季、秋季和冬季的48 h时效内晴雨预报的准确率为88%以上,订正空间较小;夏季各时效及春季、秋季和冬季168 h时效以上降水预报的空报率超过60%,可以适度订正;秋季较其他季节降水预报的漏报率略高,尤其是120 h时效以上降水的预报需关注。四季均存在降水预报过度的现象,尤以夏季最突出。ECMWF模式对安徽省降水量为0.1—0.7 mm的格点降水预报空报率较高,订正后可以明显提升预报技巧,但增加了一定漏报风险。  相似文献   

7.
北京快速更新循环预报系统(BJ-RUC)要素预报质量评估   总被引:4,自引:2,他引:2  
魏东  尤凤春  杨波  范水勇  陈敏 《气象》2011,37(12):1489-1497
使用自动站观测资料对BJ-RUC系统预报的北京15个观测站的逐时2 m温度、相对湿度、1小时降水量和风速等地面要素质量进行检验评估。结果表明:BJ-RUC系统预报的2 m温度、相对湿度和风速与实况具有一致的变化趋势,但各要素的预报性能不尽相同。结果表明:(1)对于2 m温度的预报,±1℃误差的准确率为0.2~0.5,±2℃误差的准确率更高;预报性能与预报时效无明显关系;温度预报准确性与季节和日变化有关,春、秋季优于冬、夏季,夜间优于白天。(2)对相对湿度的预报整体偏低,夏季白天偏低、冬季白天偏高。(3)对1小时降水的预报,无论全年还是夏季,晴雨预报准确率很高;对0.1 mm降水的TS评分在0.2左右。(4)对不同站点的预报性能存在明显差异。对平原地区,即海拔高度较低的站点预报性能相对较好,15个站点中,对北京的代表站点(南郊观象台)的预报最为准确;对山区站点的预报性能相对较差,对海拔最高的延庆站的预报性能最差。总体来说,BJ RUC对站点要素预报的变化趋势较好,预报准确率较高,具有很好的参考价值,但要素预报与季节、日变化及海拔高度等因素有关.具体应用时还需做适当订正。  相似文献   

8.
该文应用TS评分、预报偏差(BIAS)等方法,对ECMWF模式预报的2015年12月—2018年12月岳阳市降水场资料,开展晴雨和分级降水检验。晴雨预报检验结果表明:ECMWF模式对岳阳市晴雨预报性能总体较稳定,年际变化幅度较小;晴雨预报准确率季节差异大,冬季最高,秋季次之,夏季最低;从逐月晴雨预报检验来看,12月份最高,8月最低;晴雨预报还存在明显的日变化规律,对夜间的预报能力明显优于白天;空间上总体呈北高南低的空间分布特征。分级降水预报检验结果表明:小雨量级降水预报评分明显高于其他量级降水,中雨次之,大雨及以上量级评分较低且无明显规律;小、中、大雨3个量级任一时效的空报率整体上比漏报率大,小雨量级表现得尤为明显,说明小雨量级的空报更为严重。针对小雨降水预报空报率高的现象,该文对岳阳市ECMWF模式预报降水量1.2 mm以下消空处理后进行了预报释用,结果表明:冬季订正空间较小,夏季各时效可适度订正;春季和秋季可视情况适度订正,订正后可以有效提升预报技巧,但增加了一定漏报风险。  相似文献   

9.
基于哈萨克斯坦5个代表站的降水资料,利用一元线性回归法、Mann-Kendall突变检验和Morlet小波的方法,分析历年降水变化特征,结果表明:东部和中部降水呈减少趋势,其余为增加趋势,东部于1962年发生突变,西部和中部分别于1970年和1984年发生突变。东部春季和夏季的降水呈减少趋势,秋季和冬季为增加趋势。西部的春季、秋季和冬季降水呈增加趋势,夏季降水呈减少趋势。北部春季和秋季降水为增加趋势,夏季和冬季降水呈减少趋势。南部的春季、夏季和秋季降水呈增加趋势,冬季降水呈减少趋势。中部春季、夏季和秋季的降水呈减少趋势,冬季降水呈增加趋势。哈萨克斯坦不同区域的降水量均存在多个尺度的周期变化,但其共同点是均存在2~3a和6a的短周期变化。  相似文献   

10.
基于CMA全球模式(CMA-GFS)2019年10月至2020年12月逐日20:00(北京时)起报的数据,对东北半球高空气象要素预报进行检验评估,检验的要素包括500 hPa位势高度场和风场、 850 hPa温度场和700 hPa相对湿度场。结果表明:(1)从模式预报效果的时间变化来看,预报效果有明显的季节变化,500 hPa位势高度和850 hPa温度的预报场和分析场的相似度在夏季最低,700 hPa相对湿度场的相似度在冬季最低;随着预报时效的增加,各要素的误差幅度在夏季最小。(2)从模式预报效果的空间变化来看,500 hPa位势高度场在东北半球大部分地区预报场与分析场具有较高相似度,且中高纬地区相对低纬地区更相似,预报误差的幅度则在低纬地区相对较小高纬地区相对较大,且预报偏差以大范围负偏差为主。相比而言,模式对东亚地区的位势高度及其梯度具有更高预报技巧。850 hPa温度场预报相似度和误差幅度与500 hPa位势高度场分布相似,预报偏差则主要表现为中高纬地区温度预报整体偏低,中低纬地区偏高。在预报前期(24~48 h), 20°N以北的中高纬地区温度预报场与分析场相似度较高,均方根...  相似文献   

11.
为了对欧洲中期天气预报中心(ECMWF)数值预报图的优缺点有比较系统的了解,本文用1984年5月到1985年4月的一年北半球预报图资料,对各月平均误差分布情况及其季节变化特点作了统计分析。ECMWF数值预报图在35°—70°N之间的预报效果最好;在75°N 以北的高纬度地区,都是春、夏、秋三季500百帕高度的预报平均明显偏高,500—1000百帕厚度预报平均明显偏暖,其中又以夏季偏暖最显著,春、秋季次之(冬季则变为偏冷),年变化规律性明显;在30°N 以南地区夏秋两季都是500百帕预报明显偏低,厚度明显偏冷,最强偏冷中心位于青藏高原东南坡,冬春季则预报偏低和偏冷的程度减轻,年变化情况似与低纬度云雨量和热带低压活动的年变化大致相对应。青藏高原上空500百帕预报全年基本上都是负偏差,以夏季负偏差最大,春秋季减小,冬季趋于0,各月之间有近于正弦波型式的年变化规律性。把平均误差值与标准差相比较,可以看出低纬度地带(尤其是高原附近)是最需要也是最有利于进行系统性误差订正的地区。  相似文献   

12.
利用客观统计方法,对2009—2012年新疆15个地州首府城市最高最低温度预报进行检验。结果表明:(1)15个站最高温度预报准确率高于最低温度,最高最低温度的预报准确率均呈逐年上升趋势。(2)最高最低温度预报准确率随预报时效的延长而降低,克拉玛依、吐鲁番、和田、阿图什、喀什和哈密6个站24、48、72 h预报准确率都高于平均值。(3)温度预报夏秋季好于冬春季,其中最高温度预报夏季最好,冬季最差;最低温度预报秋季最好,春季最差。(4)2012年冬季,15个站预报员主观预报与中央台指导预报的最高最低温度SST平均值基本相同,正负技巧的站点数持平,但站点差异比较大。克拉玛依、阿图什温度预报准确率高于中央台指导预报,且正技巧较高;阿勒泰、阿克苏预报准确率低于中央台指导预报,且负技巧较大。  相似文献   

13.
西江流域面雨量与区域大气环流型关系   总被引:2,自引:1,他引:1       下载免费PDF全文
利用Lamb-Jenkinson大气环流分型方法,对西江流域1971—2015年逐日平均850 hPa和500 hPa高度场进行环流客观分型,分析流域降水天气环流型出现概率及主导环流型变化特征,探讨主导环流型对西江流域总面雨量和子流域面雨量的贡献率及环流型配置与降水的关系。结果表明:当850 hPa为西南风型、500 hPa为西风型时,流域出现降水天气的概率最大;850 hPa气旋型和500 hPa西风型对年总面雨量和各子流域面雨量的贡献率均为最大,且对东部子流域面雨量的贡献率大于西部子流域,850 hPa南风型与500 hPa反气旋型的环流配置是西部子流域秋季降水偏多的主导环流型配置;春季850 hPa气旋型与500 hPa西风型、夏季850 hPa气旋型与500 hPa西风型、秋季850 hPa南风型与500 hPa反气旋型、冬季850 hPa西南风型与500 hPa西风型的环流配置时,出现强降水天气的概率分别为18.7%,21.1%,4.0%和2.0%,即夏季最大,其次为春季,冬季最小。近45年,850 hPa气旋型、500 hPa西风型对流域年总面雨量的贡献率呈增加趋势,是西江流域面雨量呈偏多趋势的主导环流型。  相似文献   

14.
采用中国地面气象观测站2 474个站的降水资料以及NCEP/NCAR再分析资料,利用经验正交函数展开、相关分析和小波分析等方法,探讨了中国东部夏季主要降水型与春季高原大气视热源之间的可能相关特征,并初步分析了前春高原大气加热对东部夏季降水异常分布的影响机制。降水EOF分析表明,中国东部夏季降水主要分为:华南—江淮型和长江中下游型;相关和周期分析表明,300 hPa和400 hPa高原南部地区、500 hPa高原北部地区视热源与华南—江淮降水型之间相关显著,3个区域视热源均与华南降水呈负相关,且与江淮降水呈正相关;200 hPa高原偏北地区、500 hPa高原东部地区视热源与长江中下游地区降水呈负相关,而500 hPa高原西部地区视热源则与长江中下游降水呈正相关关系。以上春季高原不同高度关键区域的视热源可为预报夏季降水提供重要判据;从视热源与各个降水中心的相关特征可见,春季高原上空视热源加热场结构会影响中国东部夏季雨带南北位置的分布情况。由春至夏高原加热的"气泵"作用,使得由孟加拉湾和南海地区水汽输送经高原东部地区后,折向东输送至中国大陆东部地区。加热偏强时,水汽向北输送分量加强,雨带偏北,降水"南少北多",反之亦然。  相似文献   

15.
基于1921—2016年天津地区降水、气温观测数据,对全球降水气候中心降水(GPCC-P)、东英吉利大学气候研究中心气温(CRU-T)进行适用性评估后发现GPCC-P和CRU-T均能较好地反映天津地区降水和气温的变化。在此基础上,进一步利用GPCC-P、CRU-T计算的标准化降水蒸散指数(SPEI)分析天津地区近百年干旱时空演变特征并判断其未来变化趋势。结果表明:(1)天津干旱主要发生于1940年代初期、1990年代末和2000年代初期,四季均以轻旱和中旱为主,干旱高频季节由秋、冬季逐渐转为春、夏季。(2)天津全区SPEI气候趋势在6个时期除秋季整体呈"升、降、升"分布特征外,春、夏、冬季均表现为"升、降"的分布特征,且夏季下降趋势最为显著,1961—2010年宁河每10 a下降0.30。(3)1921—1970、1931—1980、1941—1990年天津春、冬季湿润化趋势由降水主导,而夏、秋季则由气温和降水协同影响;1951—2000、1961—2010、1971—2016年春季干旱趋势主要受气温影响,夏、冬季则为气温和降水协同影响,随着全球变暖,气温升高对干旱的影响逐渐增强。(4)1921—2016年天津地区四季SPEI与PDO呈负相关关系,春、夏季相关性从西北向东南递减,而秋、冬季相关性则由东南向西北递减。(5)未来夏季天津全区、冬季天津西南部呈干旱化趋势,春季干旱化趋势、秋季湿润化趋势不明显。  相似文献   

16.
西南地区植被变化与气温及降水关系的初步分析   总被引:7,自引:0,他引:7  
利用卫星遥感植被归一化指数(NDVI)资料和西南地区96个实测台站的月平均气温以及降水资料,初步分析了西南地区植被变化与气温及降水的关系。结果表明:近20年来西南地区植被覆盖状况较好,其中夏季植被覆盖最好,冬季植被分布空间差异最大;西南地区植被整体呈增加趋势,同时也存在较明显的季节和区域差异:春季西南大部分地区植被以增加为主,夏季、秋季全区以减少为主,冬季则以增加为主且存在明显的东西反向特征,东部减少西部增加。时滞互相关分析表明:西南地区11~2月份的植被对超前其1~2个月的气温以及夏季的植被对春季气温的敏感性比较大,3~4月的植被生长对上年夏季的降水敏感性比较大;同期时,1~3月植被和气温为正相关关系,6~9月的植被生长和降水为明显的负相关关系;在植被超前气候的条件下,1~2月的植被和滞后1~2个月的气温呈正相关关系,与滞后1个月的降水有明显的负相关关系。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号