首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 113 毫秒
1.
用GPS水汽监测资料分析一次强对流性降水过程   总被引:1,自引:1,他引:0       下载免费PDF全文
张振东  魏鸣  王皓 《气象科学》2013,33(5):492-499
用江苏省地基GPS水汽监测系统得到的大气可降水量(PWV)资料,对江苏地区2009年夏季一次强对流性天气产生的降水过程进行了综合分析,分析了各时段GPS-PWV的变化特征和水汽的输送特点,并利用WRF中尺度数值模式对此次过程进行了数值模拟。结果表明:GPS-PWV对于空中水汽变化具有很高的敏感性,能及时地反映大气中水汽的时空变化。通过对数值模式结果进行分析后,发现强盛的水汽输入及辐合上升、中高层弱冷空气的侵入活动、低层西南气流加强、对流不稳定层加剧等多种因素的共同作用是造成此次中小尺度对流性降水的主要原因。GPS-PWV提供的精确水汽变化结合数值模式所模拟出的动力、热力条件对于强对流性暴雨预报和降水区域判定具有较好的参照意义。  相似文献   

2.
应用WRF中尺度模式模拟了发生在黑龙江省西南部的一次区域性暴雨过程,通过云微物理参数化方案的敏感性试验,分析了对流云体中水汽垂直输送特征.结果表明:强对流活动使对流层上层局地水汽平均增加10倍以上,对流活动对于水汽的垂直输送以及对高层水汽含量的改变具有非常显著的作用.云微物理参数化方案,对于整个对流层水汽通量密度变化趋势有较好的表现.在不同方案中,0.5 ~9 km水汽通量密度及24 h总水汽垂直输送量,随高度变化差异较大.这是由平均垂直速度对不同方案敏感性造成的,不同的参数化方案,水汽通量最大值间最多相差可达27.9%.在不同的方案中,对流层上层加湿作用持续时间和对流层上层平均水汽混合比的最大值较敏感:对流活动可造成模拟区域对流层上层增湿持续16 ~20 h不等;对流层上层平均水汽混合比的最大值差异明显,最大可达15.8%.进行24 h平均后,上述物理量对方案的敏感性可减小到8.3%.所以,云微物理方案的不确定性对于暴雨过程的时间尺度是不可忽视的.  相似文献   

3.
利用WRF模式模拟青藏高原那曲地区一次对流降水过程。将模拟结果与实测资料进行对比分析,以了解不同微物理和边界层参数化方案组合对降水过程的模拟差异。结果表明,WRF模式能够模拟此次对流降水的发生,但对降水中心位置的模拟存在一定偏差,因此模拟结果与站点实测资料存在一定的差异。将模拟结果与TRMM卫星降水资料进行对比发现,两者的对流发生时间较为吻合。另外,使用不同的初边界条件对本次对流过程的模拟也存在一定差异,总体来说,ERA-Interim资料为初边界场时模拟的降水分布与TRMM降水观测资料的较吻合。通过对不同微物理和边界层参数化方案模拟的水汽通量、水汽通量散度和垂直运动分析,模式对本次降水过程的模拟对边界层参数化方案的敏感性超过微物理参数化方案。  相似文献   

4.
基于中尺度数值模式(WRF v3.4),对发生在湖北省红安地区的一次强对流降水天气过程进行了数值模拟。结果表明,此次强对流天气是在水汽充足,高层辐散、低层辐合以及不稳定能量较大的条件下发生发展的。模式模拟得到的地面累积降水和雷达反射率因子与实况相符,云下雨水蒸发过程显著。进行敏感性试验,将雨水蒸发率分别降至1/2、1/4以及完全关闭后,雷达回波强度减弱,对流演变特征发生变化。蒸发过程的减弱使得降水始发阶段以及后期消散阶段的降水强度增强,在对流旺盛阶段降水强度减弱。同时雨水蒸发过程减弱导致云中上升气流减弱,冰雪晶及霰粒子含水量极大值减小、极大值所在高度降低。可见,雨水蒸发对对流云团动力、热力结构及云微物理结构以及云物理过程均有一定程度的影响。  相似文献   

5.
在CM1模式动力框架基础上,通过方程推导发现:平流、对流、网格距、湿度梯度、不稳定层结、水汽含量、温度以及沉降作用对强对流天气发生发展的模拟有着直接影响,其中网格距、湿度梯度、不稳定层结主要体现在湍流项中,而温度作用主要体现在水汽相变过程中。使用能激发飑线过程的探空资料进行理想模拟,采用模式数据做尺度分析,得到飑线系统中平流、对流以及沉降作用对水汽变量的影响最大,飑线的出现需要水汽分布和上升气流的配合,水汽相变影响次之,湍流作用相对较小。通过分析水平风场与水汽扰动的变化,证实了平流对飑线过程中水汽输送的重要作用。  相似文献   

6.
2001年9月16日昆明机场发生了一次强对流天气过程,经二次滤波分析发现,这次过程主要是在大尺度辐合背景下由一个中尺度低涡扰动引起.物理量场诊断分析表明,触发对流的中尺度低涡是一个低层辐合强烈、向西北倾斜且较深厚的低值系统.而昆明地区持续高温及水汽积累为对流发生储备了能量和水汽条件,垂直风切变则使对流发展更为旺盛、维持时间更长.  相似文献   

7.
渤海湾地区一次碰撞型海风锋天气过程的数值模拟分析   总被引:1,自引:0,他引:1  
利用WRF(Weather Research and Forecasting)模式对渤海湾地区2009年9月26日一次碰撞型海风锋天气过程进行了数值模拟分析,模拟结果较好地重现了这次天气过程以及海风锋的结构和特征。结果显示,海风锋锋后是较为深厚的对流不稳定能量和水汽高值区,锋后水汽高值区的形成源于海风的堆积和往高空输送,而锋后对流不稳定能量的产生归因于抬升凝结高度和自由对流高度的降低以及平衡高度的升高,这些高度变化则源于冷湿海风给低层大气带来的降温和增湿,其中给低层大气带来的增湿是主要影响因子。对流系统与海风锋相向碰撞时,对流系统容易进入海风锋锋后触发强对流不稳定能量形成强对流运动,同时弱对流抑制为对流运动的触发提供了有利的条件,强对流运动把海风锋锋后充沛的水汽往上输送,从而造成强降水天气。另外,对流系统与海风锋碰撞后沿着海风锋锋后移动可能更有利于对流运动的发展和维持。  相似文献   

8.
2003年4月17~18日山东春季大暴雨过程与暖切变、850 hPa中尺度低涡的发生发展、高温和丰沛的水汽密切相关。利用中尺度有限区域模式MM5对大暴雨过程进行了数值模拟,在数值模拟比较准确的基础上,利用模式输出的细网格资料,根据螺旋度(Helicity)理论结合稳定度条件,对这次暴雨演变过程中的螺旋度进行了诊断分析。结果表明,强对流和暴雨发生在不稳定大气中,正螺旋度大值中心出现的高度与对流发展强弱有关;500 hPa螺旋度正值区长轴与造成强对流的暖区弱切变和雷达带状回波走向一致;大暴雨产生在850 hPa螺旋度中心附近,螺旋度的强度变化对强对流系统的移动、发展及暴雨的发生有一定的指示意义。  相似文献   

9.
玉溪一次强对流天气的中尺度特征分析   总被引:1,自引:0,他引:1  
利用常规探空资料、NCEP/NCAR再分析资料、地面自动站加密观测资料及T639数值模式资料对2013年6月9-10日发生在玉溪的一次强对流天气进行了诊断分析。结果表明,此次强对流天气是高空槽后西北气流引导冷空气南下并与西南暖湿气流在云南中北部交汇引发的,对流层低层切变线和地面中尺度辐合线、气旋式辐合中心等是此次强对流天气的直接影响系统。其水汽主要源于孟加拉湾,水汽在低层集中和输送并在云南等地上空辐合,为此次强对流天气的发生提供了有利的水汽条件。中尺度强对流云带与地面中尺度辐合系统及对流有效位能(CAPE)不连续带有较好的对应关系,中尺度强对流云带发生、发展的位置和走向与前期地面辐合线基本一致,对流单体在CAPE不连续带大值区一侧容易加强和发展。综合分析地面流场和高分辨CAPE的分布,对强对流天气的短时临近预报有一定指示意义。  相似文献   

10.
张立祥  李泽椿 《气象》2008,34(12):3-10
针对短波辐射对东北冷涡强对流的可能影响,应用MM5模式对2002年7月12日东北冷涡诱发的强风暴个例进行了数值模拟试验.发现在东北冷涡天气尺度环流背景下,大气接收的短波辐射通过激发中尺度环流影响强对流的发生时间,而不是通过影响不稳定能量的积累触发强对流;地面短波辐射对对流层低层大气的加热作用是触发本次东北冷涡强对流的重要条件.地面短波辐射加热在对流层低层产生中尺度辐合扰动及对流不稳定层结共同促使了对流的爆发和维持.  相似文献   

11.
In this study, a coupled atmosphere-surface “climate feedback-response analysis method” (CFRAM) was applied to the slab ocean model version of the NCAR CCSM3.0 to understand the tropospheric warming due to a doubling of CO2 concentration through quantifying the contributions of each climate feedback process. It is shown that the tropospheric warming displays distinct meridional and vertical patterns that are in a good agreement with the multi-model mean projection from the IPCC AR4. In the tropics, the warming in the upper troposphere is stronger than in the lower troposphere, leading to a decrease in temperature lapse rate, whereas in high latitudes the opposite it true. In terms of meridional contrast, the lower tropospheric warming in the tropics is weaker than that in high latitudes, resulting in a weakened meridional temperature gradient. In the upper troposphere the meridional temperature gradient is enhanced due to much stronger warming in the tropics than in high latitudes. Using the CFRAM method, we analyzed both radiative feedbacks, which have been emphasized in previous climate feedback analysis, and non-radiative feedbacks. It is shown that non-radiative (radiative) feedbacks are the major contributors to the temperature lapse rate decrease (increase) in the tropical (polar) region. Atmospheric convection is the leading contributor to temperature lapse rate decrease in the tropics. The cloud feedback also has non-negligible contributions. In the polar region, water vapor feedback is the main contributor to the temperature lapse rate increase, followed by albedo feedback and CO2 forcing. The decrease of meridional temperature gradient in the lower troposphere is mainly due to strong cooling from convection and cloud feedback in the tropics and the strong warming from albedo feedback in the polar region. The strengthening of meridional temperature gradient in the upper troposphere can be attributed to the warming associated with convection and cloud feedback in the tropics. Since convection is the leading contributor to the warming differences between tropical lower and upper troposphere, and between the tropical and polar regions, this study indicates that tropical convection plays a critical role in determining the climate sensitivity. In addition, the CFRAM analysis shows that convective process and water vapor feedback are the two major contributors to the tropical upper troposphere temperature change, indicating that the excessive upper tropospheric warming in the IPCC AR4 models may be due to overestimated warming from convective process or underestimated cooling due to water vapor feedback.  相似文献   

12.
Cloud and precipitation parameterization schemes are evaluated, and their sensitivity to the method and/or parameters used to determine cloud physical processes is examined using a singlecolumn version of the Unified Model (SCUM). In the experiment for TWP-ICE, cloud fraction is overestimated (underestimated) in the upper (lower) troposphere due to the wet (dry) bias. The precipitation rate is well simulated during the active monsoon period, but overestimated during the suppressed monsoon and clear skies periods. In the moist convection scheme, trigger condition and entrainment process affect the lower tropospheric humidity through the impact on convective occurrence frequency and intensity, respectively. Strengthening the trigger condition and using the adaptive entrainment method alleviate the low-level dry bias. In the microphysics scheme, more large-scale precipitation is produced with prognostic rain, due to rain sedimentation considering vertical velocity of rain drop, than with diagnostic rain. Less ice/snow deposition with the prognostic two-ice category results in lower ice water content and upper-level cloud fraction than with the diagnostic splitting method for the twoice category. In the cloud macrophysics scheme, the prognostic cloud fraction and cloud/ice water content scheme produces a larger cloud fraction and more cloud/ice water content than the diagnostic scheme, mainly due to detrainment from moist convection (cloud source) that surpasses the effect of convective heating and drying (cloud sink). This affects temperature by influencing the radiative, convective, and microphysical processes. The experiment with combined modifications in cloud and precipitation schemes shows that interaction between modified moist convection and cloud macrophysics schemes results in more alleviation of the cold bias not only at the lower levels but also at the upper levels.  相似文献   

13.
利用NCEP FNL再分析资料为初始场,通过WRF中尺度数值模式(V3.9.1版本)对2015年8月26~27日青藏高原那曲地区一次对流云降水过程进行了模拟,分析了不同积云对流参数化方案和云微物理参数化方案组合对本次降水过程中降水量、环流场、雷达反射率以及云微物理特征模拟效果的影响。结果表明:WRF模式能较好地模拟出本次降水的时空变化特征,但不同参数化方案组合各有优势,总体而言,Grell-Devenyi+SUBYLIN和Grell-Freitas+SUBYLIN组合模拟性能最优。本次对流云降水以冰相过程为主,雪粒子贡献最大,暖云粒子对降水的影响并不明显。从云微物理过程的时间演变可看出,性能最好的SUBYLIN方案能合理模拟降水过程中雪粒子与冰晶粒子间的转换过程,雪粒子可在凝结过程中释放潜热促使对流运动发展,也可通过融化过程促进降水发生,对流层高层冰晶粒子凝华产生的潜热释放亦为深对流的发展创造了有利条件。   相似文献   

14.
A heavy rainfall in the Meiyu front during 4--5 July 2003 is simulated by use of the non-hydrostatic mesoscale model MM5 (V3--6) with different explicit cloud microphysical parameterization schemes. The characteristics of microphysical process of convective cloud are studied by the model outputs. The simulation study reveals that: (1) The mesoscale model MM5 with explicit cloud microphysical process is capable of simulating the instant heavy rainfall in the Meiyu front, the rainfall simulation could be improved significantly as the model resolution is increased, and the Goddard scheme is better than the Reisner or Schultz scheme. (2) The convective cloud in the Meiyu front has a comprehensive structure composed of solid, liquid and vapor phases of water, the mass density of water vapor is the largest one in the cloud; the next one is graupel, while those of ice, snow, rain water and the cloud water are almost same. The height at which mass density peaks for different hydrometeors is almost unchangeable during the heavy rainfall period. The mass density variation of rain water, ice, and graupel are consistent with that of ground precipitation, while that of water vapor in the low levels is 1--2 h earlier than the precipitation. (3) The main contribution to the water vapor budget in the atmosphere is the convergence of vapor flux through advection and convection, which provides the main vapor source of the rainfall. Besides the basic process of the auto-conversion of cloud water to rain water, there is an additional cloud microphysical process that is essential to the formation of instant heavy rainfall, the ice-phase crystals are transformed into graupels first and then the increased graupels mix with cloud water and accelerates the conversion of cloud water to rain water. The positive feedback mechanism between latent heat release and convection is the main cause to maintain and develop the heavy precipitation.  相似文献   

15.
云微物理参数化对华北降雪影响的数值模拟   总被引:7,自引:3,他引:7  
对发生在华北地区的一次降雪过程进行了中尺度数值模拟。结果表明,高纬强冷空气南下和低纬倒槽的水汽输送是造成这次长时间降雪过程的主要原因。采用混合方案的中尺度数值模拟表明,这次降雪天气不是对流云造成的,而是稳定性的非对流云降雪。敏感性试验也表明,采用其他积云参数化方案对模拟的降雪量基本没有影响。控制试验模拟的24h降雪量与实际观测比较吻合。模拟结果表明,当采用Dudhia简单冰相方案时,会有过多的云冰、过冷却水及雪;当采用Reisner 1混合相方案时,会有过多的云冰和雪;修改的各个Reisner 2方案对此次降雪的预报改进不大,但各个Reisner 2方案的敏感性试验中云冰混合比、过冷却水混合比和雪混合比稍微有差异。  相似文献   

16.
一次梅雨锋暴雨云物理特征的数值模拟研究   总被引:4,自引:1,他引:3  
鞠永茂  王汉杰  钟中  宋帅 《气象学报》2008,66(3):381-395
利用中尺度数值模式MM5(V3.6),选用模式中不同的显式云物理方案,对2003年7月4-5日发生在江淮流域的梅雨锋暴雨过程进行了数值模拟,并根据模拟结果对造成此次暴雨过程的对流云团的微物理特征进行了分析.研究结果表明:(1) 具有详细云物理过程的中尺度模式MM5对短时强降水过程具有较好的模拟能力,提高MM5模式的分辨率,可以更好地模拟短时梅雨锋暴雨过程,模式中的Goddard云物理方案的模拟结果要优于Reisner方案和Schultz方案.(2) 梅雨锋对流云团是一种复杂的固、液、气三相混合体结构,在云体区域内的平均质量密度分布中,水汽的质量密度最大,其次是霰,而冰晶、雪、云水和雨水的质量密度较小且数值大小彼此接近,各种相态粒子质量密度峰值出现的高度随时间无明显变化.雨水、云冰和霰的质量密度随时间演变规律与地面降水强度的变化特征相一致,近地面层水汽密度随时间的演变规律比地面降水强度提前1-2个小时,水汽通量的辐合对暴雨时段内水汽的补充和维持起到了重要的作用.(3) 除了最基本的云水向雨水转化的云微物理过程之外,此次降水过程还显示,在中层500-700 hPa范围内雪、冰晶等冰相粒子首先转化为霰粒子,而霰和云水的结合进一步加速(剧)云水向雨水的转换,成为短时特大暴雨形成不可或缺的动力机制,云物理过程中的相变潜热与对流运动的正反馈机制是促进暴雨维持和发展的最重要热力因子.  相似文献   

17.
唐洁  郭学良  常祎 《大气科学》2018,42(6):1327-1343
第三次青藏高原科学试验针对高原夏季云和降水物理过程开展了大量观测研究,为进一步揭示高原云微物理结构、云中水分转化和区域水分收支特征,本文采用中尺度数值预报模式(WRF)并结合高原试验期间的各种观测资料,对那曲观测试验区2014年7月5~6日的一次较为典型的夏季对流云降水过程进行了数值模拟研究。结果表明WRF模式能够基本再现高原夏季对流云的发展演变过程以及降水的日变化特征。模拟结果显示高原夏季对流云中具有较高的过冷云水和霰粒子含量,冰相过程在高原云和降水的形成和发展中具有十分重要的作用,地面降水主要由霰粒子融化产生。暖雨过程对降水的直接贡献很小,但在霰胚形成中具有十分重要的作用。霰粒子胚胎的形成主要来源于冰晶与过冷雨滴的撞冻过程,雪粒子和过冷雨水的碰冻转化及过冷雨滴的均质冻结贡献相对较小。霰粒子的增长过程在12 km(-40℃)以上层主要依靠对冰晶、雪粒子的聚并收集过程,而在其下层的增长过程主要依赖对过冷云水的凇附增长,对雪粒子的聚并收集和凝华增长过程较小。高原那曲地区净水汽收支为正,日平均降水转化率可达20.75%,接近长江下游地区,高于华北、西北地区。该地区日降水再循环率为10.92%,说明局地蒸发的水汽对高原降水的水汽来源具有一定的贡献,但高原降水的90%仍然由外界输入的水汽转化形成。  相似文献   

18.
The effects of deep convection on the potential for forming ozone (ozone production potential) in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud dynamical and photochemical simulations based on observations in 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. The photochemical fate of pollutants actually entrained in a cumulus event of August 1985 during NASA/GTE/ABLE 2A (Case 1) is compared to photochemical ozone production that could have occurred if the same storm had been located closer to regions of savanna burning (Case 2) and forest burning (Case 3). In each case studied, the ozone production potential is calculated for a 24-hour period following convective redistribution of ozone precursors and compared to ozone production in the absence of convection. In all cases there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed NOx, hydrocarbons and CO compared to the case of no convection.In the August 1985 ABLE 2A event, entrainment of a layer polluted with biomass burning into a convective squall line changes the free tropospheric cloud outflow column (5–13 km) ozone production potential from net destruction to net production. If it is assumed that the same cloud dynamics occur directly over regions of savanna burning, ozone production rates in the middle and upper troposphere are much greater. Diurnally averaged ozone production following convection may reach 7 ppbv/day averaged over the layer from 5–13 km-compared to typical free tropospheric concentrations of 25–30 ppbv O3 during nonpolluted conditions in ABLE 2A. Convection over a forested region where isoprene as well as hydrocarbons from combustion can be transported into the free troposphere leads to yet higher amounts of ozone production.  相似文献   

19.
针对2005年7月22日的发生于华北的暴雨中尺度对流系统,在用中尺度ARPS模式数值模拟和分析云场、动力场以及微物理过程释放的潜热垂直分布和作用特征的基础上,通过改变主要微物理过程潜热做敏感性数值试验,研究和分析了潜热对云系发展演变、云系宏观动力场、水汽场、云场和降水的影响,总结出云暖区潜热的影响途径。结果表明,在对流云团中,5000 m以上微物理过程起加热作用,以下起冷却作用。不同物理过程潜热加热的云层高度不同:高层起加热作用的主要为水汽凝结、云冰初生和雪凝华增长、霰撞冻云水过程;中层起加热/冷却作用的主要为水汽凝结、霰/雹融化过程;低层雨水的蒸发过程起冷却作用。微物理过程潜热通过影响云系和降水发展过程、云系动力场,进而影响水汽场、云场和降水。忽略霰/雹融化潜热,相当于增加云系暖区潜热,促进了低层气旋性环流的形成,增强了低层动力场的辐合,使得低层辐合区增多、增强;中低层水汽通量辐合区增多、面积扩大,明显地促进了对流云系的发展,增大了含水量和覆盖范围,云系的降水量显著增加,强降水区覆盖范围扩大。即使减少20%的凝结潜热,云系的发展也受到极大抑制,没有气旋性环流生成,低层辐合区缩小、强度降低,水汽通量辐合区也同样缩小、强度降低,云系对流发展减弱、含水量降低,因此,降水量大为减小,降水范围也显著缩小。此外,微物理过程潜热还影响到此次中尺度对流系统发展演变过程,改变了云系的形态、影响到系统的移动和系统中对流云团的发展强度和分布情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号