首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
宋静  傅文伶 《气象科学》2021,41(1):119-127
利用天气雷达、地面自动站和微波辐射仪等多种气象探测资料,对2017年7月发生在成都双流机场的一次暴雨过程进行了分析。结果表明:此次暴雨发生在弱天气系统强迫条件下,大气层结呈现弱对流抑制、低抬升凝结高度、中等对流有效位能,湿层深厚,低层较暖且低层无急流影响。短时强降水由中尺度系统直接产生,午夜前的初始对流由高压西北部偏南暖湿气流与山体下滑冷气流相互作用,结合山前强水平温度梯度产生,之后在冷池和边界层暖湿气流作用下生成新的对流。产生强降水的回波结构密实,暖云特征突出,属于热带低质心降水系统。对抬升凝结高度、自由对流高度、湿层厚度等的分析表明,水汽条件较为极端,但由于系统整体属于前向传播,无明显的"列车效应",限制了实际降水效率。  相似文献   

2.
利用常规探测资料、卫星云图资料和多普勒雷达资料,对2011年6月19日云南昭通小龙洞乡小米村灾害性天气进行了分析,结果表明:在降水开始的1h左右就达到暴雨量级,短历时、雨强大、突发性强,是此次降水过程的特点;高冷低暖、整层潮湿,低层偏南暖湿气流输送水汽提供强降水所需的水汽条件,中高层风向辐合及边界层辐合线的抬升力触发了对流不稳定能量的释放是此次过程的天气成因;中尺度对流系统为形成强降水的直接影响系统。利用卫星云图和多普勒雷达对降水的估计与实际灾害情况相符。  相似文献   

3.
胡雅君  张伟  赵玉春  陈德花 《气象》2020,46(5):629-642
利用双偏振多普勒雷达、风廓线雷达、雨滴谱仪等新型探测资料以及双雷达风场反演资料、地面加密自动观测站资料与FNL再分析资料,分析了2018年5月7日闽南沿海一次暖区特大暴雨过程的中尺度特征。结果表明:此次特大暴雨发生在强盛的超低空西南急流区内;超低空急流具有明显的脉动特征,其突然增强引起低空扰动加强,造成明显的低层辐合;深厚的西南急流导致对流回波形态与回波移动方向高度一致,使得多个强降水对流系统接连经过同一区域,形成列车效应,这是强降水长时间维持的重要原因;强降水对流回波带中,水平方向存在风向、风速双重辐合,垂直方向上存在明显的波状运动,上升运动位于强回波前部,使其不断向东北方向移动,同时在强降水对流回波带东南侧存在明显的补偿性次级环流,使低层辐合和上升运动得以维持;高浓度的小雨滴与大雨滴并存是此次暖区强降水云微物理的重要特征。  相似文献   

4.
2013年7月1日京津冀区域在副热带高压北抬、偏南低空急流加强、高空槽东移的环流背景下,出现了一次罕见的降水强度大、持续时间长的双雨带暴雨过程。利用常规观测、NCEP(National Centers for Environmental Prediction)再分析资料和多种加密观测以及雷达变分同化分析资料等对此次暴雨过程的成因和中尺度特征进行了分析。结果表明:南北两支暴雨带的形成机制和中尺度过程有显著差异,但是双雨带在形成与维持过程中也有相互促进作用。南支暴雨带发生于西南暖湿气流加强的环境下,对流不稳定层结显著、整层湿度大;强降水是在暖式中尺度辐合线的触发和组织下由中尺度对流复合体产生的,雷达回波具有明显的"列车效应"和后向传播特征,属于深厚的暖区湿对流暴雨,雨强和累积雨量极大、中尺度特征明显;地面辐合线及中尺度涡旋的位置决定了雨带和特大暴雨中心的位置,强降水产生的冷池出流和偏南暖湿气流形成的温度梯度最大区域指示了强回波的传播方向。北支暴雨带是在冷式切变线和低空低涡的影响下,由切变线云系形成的多单体回波带造成的;不稳定能量条件比南支暴雨带差,但是高低空系统耦合作用产生的上升运动强,中层的干冷侵入形成了明显的θse锋区,属于锋面对流系统,同时地形对降水有显著的增幅作用,多种因素综合作用造成雨强相对较弱,但是降水持续时间长,暴雨区面积大;过程中低空低涡的移动路径与强降水的落区和雨带的位置有较好的对应。南支暴雨带暖区降水后边界层形成的偏东风不仅为北支暴雨带提供水汽输送,而且在太行山前的地形抬升作用促使了强对流单体的发生发展,增强了北支暴雨带的降水强度,而太行山前强对流降水造成的冷池促进了地面中尺度涡旋的形成,造成南支暴雨带后期强对流回波的合并和降水的再度加强。  相似文献   

5.
一次远距离台风暴雨中尺度对流系统的分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用多普勒雷达、气象卫星、自动气象站等监测数据以及NCEP/NCAR再分析资料,对安徽省一次远距离台风暴雨中尺度对流系统的环流背景、内部结构及其演变进行了系统分析。结果表明:1)低层台风外围偏东气流的输送使得暴雨区增温增湿,进而增强中纬度大气的不稳定度;西风槽前的上升运动有利于暴雨区低层辐合的加强和垂直运动的发展维持。2)强降水过程主要由两个β中尺度对流系统造成,在暴雨区上空β中尺度对流系统的新生维持是强降水维持较长时间的重要原因。3)雷达回波和地面要素场上,强降水表现为两个β中尺度的对流系统的生成发展,中尺度对流系统锋生的原因虽各有不同,但对流的发展与地面中尺度辐合线和加强的中尺度低压有关。γ中尺度的强对流单体是造成局地降水峰值的直接原因。4)两段强降水的出现都表现出中纬度系统和台风外围气流的相互作用,低层冷空气的触发以及西风槽前暖湿气流的加强都会使降水有明显的增幅。5)雷达速度场上,β中尺度对流系统的加强和低层暖湿气流的加强紧密相关。γ中尺度对流系统的生成则是由速度场上小尺度的风速辐合造成。  相似文献   

6.
2020年6月12日凌晨,贵州遵义出现一次局地特大暴雨过程。局地强降水出现在正安碧峰镇,24 h过程雨量266.4 mm,2 h累计雨量达225.8 mm,最大小时雨强达163.3 mm·h-1 ,其中03时10—40分30 min雨量达到115.3 mm。利用常规高空和地面观测资料、地面加密观测资料、NCEP再分析资料、新一代C波段双偏振多普勒天气雷达资料等,结合特殊地形因素,初探碧峰极端短时强降水的形成原因。结果表明:①此次过程是在西太平洋副热带高压西进北抬,同时巴尔喀什湖—贝加尔湖横槽东移南下,西北地区—四川盆地低槽活跃的背景下产生的,强降雨主要出现在低层低涡切变附近及切变右前侧南风辐合区内,属暖区性质暴雨,偏南气流明显风速辐合和地面辐合线是正安碧峰特大暴雨的重要影响因子,深厚暖云层高效率降水增加了降水的极端性。②正安附近低层水汽辐合明显,高层处于南亚高压中心控制的强辐散区,高层辐散抽吸对强降水维持和加强有利;③雷达回波显示,回波呈后向传播,“列车效应”特征明显,且回波强度强、顶高高,垂直累积液态水含量极高,各种参数均能说明强降水时段水汽充沛、对流旺盛。双偏振雷达参数表明,可能存在大雨滴或一些融化的小冰粒,差分反射率和差分传播相移率同时较大,表明大雨滴数量多,大量大雨滴易产生强降水,暖云层厚,“低质心”高效率降水,因此总体降雨强度很强。④碧峰处在“喇叭口”地形内,东南气流进入“喇叭口”使降水更大、雨强更强。  相似文献   

7.
北方一次暖区大暴雨强降水成因探讨   总被引:19,自引:11,他引:8  
徐珺  杨舒楠  孙军  张芳华  谌芸 《气象》2014,40(12):1455-1463
2012年7月7日黄淮出现一次典型暖区大暴雨过程,降水持续时间长、强度大和强降水范围集中,中尺度特征明显。本文通过常规和非常规观测、NCEP分析资料对该次黄淮暖切变线引发的豫东北、鲁南和苏北等地大暴雨天气过程的成因进行探讨,结果表明:整层高湿环境有利于降低暖区暴雨对抬升条件的要求、提高降水效率和局地不断产生中尺度对流系统;低层垂直风切变和超低空急流在对流触发和维持中可能有重要作用;次天气及以下尺度的抬升条件,如地面辐合线、925和850 hPa切变和低空急流出口区的风速辐合等均可导致强降水,降水落区一般位于低层多层风速辐合的叠置区;暖区暴雨的雷达回波具有明显的后向传播、列车效应和热带降水型特点。  相似文献   

8.
“16·7”华北极端强降水特征及天气学成因分析   总被引:11,自引:9,他引:2  
2016年7月19-20日华北出现了当年入汛以来最强降水过程。此次降水过程为一次影响范围广、累积雨量大、持续时间长的极端强降水过程,其强度较"96·8"强,仅次于"63·8"。以暖云降水为主,短时强降水特征明显,局地小时雨强强、且具有明显的地形降水特征。此次强降水发生在南亚高压东伸加强、副热带高压西伸北抬、中高纬度西风带低涡系统发展的环流背景下,黄淮气旋、西南和东南低空急流的异常发展以及水汽的异常充沛表明此次强降水过程动力抬升和水汽条件非常有利。强降水过程表现出明显的阶段特征,主要分为两个阶段:19日凌晨至白天为高空槽前偏东风导致的地形强降水、19日夜间至20日为黄淮气旋系统北侧螺旋雨带造成的强降水。第一阶段的降水主要与高空槽前偏东风/东南风急流的发展有直接关系。这一阶段对流降水旺盛,中层弱干冷平流以及低层强暖平流是对流不稳定能量的维持机制,强降水形成的冷堆与局地地形作用产生的中尺度锋生过程为对流持续新生提供了有利条件。第二阶段的降水主要与低涡切断和黄淮气旋的强烈发展有关。该阶段降水对流相对较弱,黄淮气旋进入华北以后移动缓慢,从而造成降水持续时间较长。  相似文献   

9.
利用NCEP FNL分析资料、青岛降水现象仪和双偏振雷达观测资料,对北上台风利奇马(1909)和巴威(2008)引发的局地对流性强降水微物理特征进行分析,结果表明:在台风外围的东南暖湿气流内,受地形或边界层锋区触发形成的强对流单体后向传播或原地合并加强造成了局地强降水;雨滴的质量加权平均直径(Dm)和对数归一化浓度(l...  相似文献   

10.
利用常规天气资料及地面自动站、风廓线雷达、新一代天气雷达资料和ERA-Interim逐6 h 0.125°×0.125°再分析资料,分析2015年5月19日福建西部山区一次极端降水的中尺度特征。结果表明:(1)极端降水分为锋前暖区降水和锋面降水两个阶段,暴雨区位于低空西南急流轴左侧,水汽充足,冷暖空气交汇,不稳定能量大,抬升凝结高度和自由对流高度低,大气可降水量大及中等强度的垂直风切变形成有利于中尺度对流系统(mesoscale covective system, MCS)发展的环境条件。(2)锋前暖区降水期间,西南气流携带高能量和水汽充足的空气移入暴雨区被中尺度边界附近的冷出流空气抬升,不断产生新的对流单体,对流单体向东北偏东方向移动,排列形成短雨带;若干条东北—西南向长度不等的短雨带在中尺度出流边界北侧建立,缓慢向东移动,依次重复影响关键区;暴雨关键区存在辐合线和风速辐合,为降水提供了良好的动力抬升条件;向西南开口的河谷地形加强了对流的发展;对流单体不断后部建立和东北西南向多个短雨带重复影响同一地区的列车效应是此阶段MCS主要发展方式。(3)锋面降水期间,对流单体在低涡切变南侧风速辐合、水汽和能量大值区发展东移南压,中高层先于低层转偏北气流,表现出前倾特征,垂直风切变加大,冷空气从中高层先扩散南下,与低层暖湿空气交汇使对流加强,冷暖气流的交汇叠加风速辐合使得强降水加强并维持。对流单体后向传播向东移动产生的列车效应是此阶段MCS主要发展方式。  相似文献   

11.
北京721特大暴雨极端性分析及思考(一)观测分析及思考   总被引:32,自引:12,他引:20  
谌芸  孙军  徐珺  杨舒楠  宗志平  陈涛  方翀  盛杰 《气象》2012,38(10):1255-1266
本文利用多种常规和非常规观测资料对北京2012年7月21日大暴雨过程的降水特点,引发特大暴雨的中尺度对流系统的环境场条件及其发生发展过程进行了全面的分析。观测分析发现:这次特大暴雨是一次极端性降水过程,具有持续时间长、雨量大、范围广的特点。降水过程由暖区降水和锋面降水组成。暖区降水开始时间早,强降水中心较为分散,持续时间长。锋面降水阶段,多个强降水中心相连,形成雨带,雨强大,降水效率高,持续时间较短。引发此次特大暴雨的中尺度对流系统的环境场条件分析发现:极端降水过程发生在高层辐散、中低层低涡切变和地面辐合线等高低空系统耦合的背景下。来源于热带和副热带的暖湿空气在暴雨区辐合,持续输送充沛的水汽,具有极高的整层可降水量、强低层水汽辐合等极端水汽条件。在充沛的水汽条件下,低涡切变、低空急流上的风速脉动、地面辐合线、地形作用等触发了强降水。随着锋面系统东移,在冷空气和适度的垂直风切变作用下对流系统组织化发展,产生较强的锋面降水。中尺度对流系统发生发展过程分析发现:降水过程首先以层状云降水和分散的对流性降水为主。随着干冷空气的侵入逐渐转化为高度组织化的对流性降水,多个中小尺度对流云团组织化发展并形成MCC,产生极端强降水。由于回波长轴方向、地形以及回波移动方向三者平行,此次过程的雷达回波具有明显的“列车效应”;并具有明显的后向传播特征和低质心的热带降水回波特点。通过此次罕见暴雨事件观测资料的综合分析,提出了需要进一步研究的问题:此次特大暴雨过程极端性降水特点及极端水汽条件的成因;北方地区暖区暴雨的形成机制;列车效应和后向传播的形成机制;对流单体的组织维持机制以及数值预报对暖区降水的模拟诊断能力等。  相似文献   

12.
2018年5月7日华南地区受锋面中尺度对流系统和暖区对流系统影响,出现多条中尺度雨带。其中锋面对流系统形成降雨区范围较广,雨量分布不均;在锋前30~200 km暖区内,多个离散的短生命史β中尺度对流系统形成范围较小的中尺度雨带;而在华南沿海地区中尺度线状对流长度超过300 km,稳定维持时间超过12 h,形成局地300 mm以上的沿海强降雨带。雷达回波分析表明华南地区的锋面对流系统、暖区对流系统均以低质心型对流单体为主,其中锋面对流单体35 dBz回波顶高平均为5.5 km,暖区对流系统35 dBz回波顶高平均为4.7 km。利用ERA5再分析资料诊断降水效率表明,锋面系统降水效率平均在10%~15%,暖区对流系统的降水效率波动明显,瞬时降水效率可超过90%。此次降雨过程中雨滴谱分析表明,小粒子直径、高雨滴数密度的暖云降水特征突出,沿海暖区对流系统在各个降水强度量级上都具有更大的粒子直径和数浓度,因此降水效率较高。预报检验表明主流业务数值模式对于暖区对流性降水预报能力有限,欧洲中心再预报改善了暖区对流性降水离散度分布,中尺度区域数值模式能够反映锋面对流和暖区对流的基本特征,但在沿海暖区对流系统的强度、组织上仍然有偏差。比较锋面降水和暖区降水的集合预报敏感性表明,锋面降水对于锋前低压槽、低空急流等天气系统强迫具有较高预报敏感性,而沿海暖区降水对于上游入流区不稳定能量分布具有更显著的敏感性。  相似文献   

13.
利用降水现象仪、双偏振雷达、常规气象观测资料和再分析数据,分析了郑州“7·20”极端强降水过程的微物理特征。此次过程受多尺度天气系统的共同影响,为复杂多变的降水微物理特征提供了有利的环境条件。结果表明,此次过程地面雨滴谱分布随时间存在明显变化,雨滴谱参数分布较广,覆盖了从大陆性对流降水至海洋性对流降水的分布区域。20日16—17时最强降水时段,小粒子数密度显著高于东亚地区普通对流性降水的统计结果和华南地区夏季平均值,且存在大量大粒子,保证了极高的降水效率。双偏振雷达参量的垂直结构反演结果显示,对流系统质心低,具有典型的暖云特征;0 ℃层以上冰相过程相对活跃,0 ℃层以下强烈的暖雨过程,大量的冰相粒子落下并融化和低层高效率的雨滴碰并增长过程,导致各尺度高浓度雨滴的生成,最终形成地面的极端强降水。  相似文献   

14.
利用常规气象观测、地面加密自动站和多普勒天气雷达资料,结合WRF(Weather Research and Forecast)模式模拟资料,对2015年6月26—28日长江中下游的一次梅雨锋暴雨过程中尺度对流系统(Mesoscale Convective System,MCS)的组织特征和对流触发条件进行分析。结果表明:1)暴雨过程线状MCS在发展初期表现为东西向雨带不断的"后部建立"以及随后对流单体的"列车效应";在发展成熟期,对流单体向东北—西南向发展,形成多个近乎平行的东北—西南向短雨带。呈现2种尺度的对流组织方式:新生对流单体沿着单个雨带向东北方向的"列车效应"和短雨带沿着线状M CS向东平流的"列车带"效应。2)低空急流的持续加强为对流的发生发展提供了条件性不稳定和对流有效位能,偏南暖湿气流在向东北推进的过程中,在风速辐合处被强迫抬升至自由对流高度,释放不稳定能量,触发对流。3)对流雨带内近地面向南的冷出流与低层西南暖湿气流的持续交汇和相互作用有利于新单体生成发展,使雨带得以维持。  相似文献   

15.
2017年广州“5·7”暖区特大暴雨的中尺度系统和可预报性   总被引:2,自引:0,他引:2  
2017年5月7日广州发生了特大暴雨,各家确定性业务预报模式均漏报了此次过程。本文利用常规观测资料和广州天气雷达资料对此次暖区特大暴雨过程的天气尺度背景、中尺度系统演变和可预报性进行了详细分析,同时通过分析ECMWF集合预报中成功预报出广州周边地区出现局地强降水与预报了弱降水的成员间的差异,探讨影响本次大暴雨发生的关键触发因子。结果表明:2017年“5·7”大暴雨的环境条件和动力强迫较弱,在弱风场环境下,冷高压后部东南风或偏南风回流,经过城市热岛区域,转为偏暖气流,与山坡下滑冷气流在山前一带形成的水平风场辐合,结合山前强水平温度梯度,共同触发了初生对流单体。其后,雷暴出流和边界层暖湿气流形成的辐合线又触发新生单体,并使已减弱的降水单体重新加强产生第二阶段强降水。前两个阶段的局地特大暴雨分别是由稳定少动的块状强回波单体发展到嵌有中涡旋的强单体和较长生命史的弱HP型超级单体造成的,第三阶段的大暴雨是由向南传播合并新生单体并随短波槽东移的带状回波造成;三个阶段成熟回波垂直结构上均呈低质心暖云降水的特点。由ECMWF集合预报成功预报出局地强降水与弱降水成员之间的差异可见,加强的温度梯度及地面风场辐合可能是本次局地强降水的重要触发因子。短期时效内数值模式难以做出暖区尤其是弱风场环境下暴雨以上降水预报,目前的监测和短时临近预警是主要手段。  相似文献   

16.
2019年5月18日,广东省韶关市出现了局地特大暴雨,刷新了韶关有气象记录以来的雨量记录。利用常规观测资料、区域气象自动站观测资料、韶关双偏振多普勒天气雷达资料,以及NCEP 1 °×1 °再分析资料对本次过程进行详细分析,探讨本次过程发生的极端性成因。(1) 本次过程是粤北历史罕见的局地暖区突发性特大暴雨过程,天气尺度的背景场较弱,极端性条件不显著,但能从中尺度分析场分析出暴雨潜势。(2) 暴雨发生之前,韶关一直处于偏南暖湿气流控制的区域,并且随着对流抑制减小为0,对流有效位能增强,自由对流高度下降至近地面,使得气块更容易被强迫抬升。(3) 多个单体持续发展与合并,出现“列车效应”,近地面冷池维持向南楔入,低层西南风加强叠加于冷池上导致强风速辐合辐散区和中气旋的出现,是维持强回波持续发展的重要原因;回波呈暖区降水的垂直结构特性,也呈现出近地面层冷池对暖湿气流强迫抬升的结构特征,侧面说明了强降水触发机制。(4) 地形对对流触发和暴雨的增幅有重要影响,峡谷和喇叭口地形加强了偏南气流的汇入及辐合作用,山前迎风坡除了地形抬升作用外,位于山前的地面辐合线对于对流既有触发又有加强与维持的作用。(5) 山前强水平温度梯度为对流发生提供了有利的环境条件,当初生对流出现降雨之后,水平温度梯度进一步加强,形成了温度梯度与对流强度之间的正反馈过程,因而对流持续发展与维持。(6) 对于此类突发的短历时强降水造成的暖区暴雨,监测和短临预警仍然是主要手段。   相似文献   

17.
2018年7月24日傍晚至25日白天,黑龙江省自西向东出现了一次区域性的暴雨和局地极端短时强降水天气过程。利用常规资料对25日黑龙江省鹤北镇形成的局地极端短时强降水原因进行分析。结果表明:此次极端强降水过程是由多种影响系统共同作用造成的,通过订正探空站,其对流不稳定能量增加,层结曲线表现为明显的短时强降水特征,暖云层厚度大,降水效率高,此次降水过程是以积云为主的混合性降水回波,强回波中心强度多为50 dBz以下,且垂直方向上高度均在融化层以下,表明产生此次极端短时强降水的特征为低质心的热带海洋型降水。  相似文献   

18.
2017年5月7日,广州市增城区新塘镇等地出现了小时雨量超过180 mm、3 h雨量超过330 mm的极端强降水事件(简称“5·7”极端强降水事件),导致了严重的经济损失。这次过程的高强度降水分为两个主要阶段:花都区降水和增城区降水,每个阶段的强降水均集中在2~3 h内,最大分钟级降水达到了5 mm的强度,增城区新塘镇184.4 mm的极端小时雨量中约120 mm的雨量是在05:30—06:00的半小时内产生的。地闪监测显示,对流发展的第一阶段伴有较少的负地闪,第二阶段仅伴有几个闪电。雷达和卫星资料显示,强降水对流系统具有空间尺度小,发展迅速的特征;但发展成熟阶段的反射率因子大值区和卫星低TBB区在空间上出现明显偏离。强倾斜上升气流可能是造成反射率因子大值区和卫星低TBB区空间偏离的原因。雷达资料垂直剖面显示,对流具有回波顶高较低、云底高度低、强回波质心低等低质心暖云降水的特征。地势分布和辐射降温是花都北部低温中心的主要成因,大尺度弱冷空气和冷中心伴随的地形的共同作用,使得偏南暖湿气流向北移动受阻后,在花都地形的强迫抬升下触发了对流。偏南暖湿气流的持续输送、花都地形的阻挡和冷池的作用是01—03时对流维持的主要原因,弱冷空气的南下对03—04时对流系统的快速南移起到了重要作用,而冷池驱动的对流发展模型可以解释增城地区05—06时对流的较长时间维持。弱的环境引导气流和偏南暖湿气流使得高效的低质心、高效率强降水对流系统较长时间影响同一局地区域,从而导致了花都和增城两地局地极端强降水的出现。  相似文献   

19.
基于ERA5再分析资料、广东省风廓线雷达、雷达拼图产品和实况观测数据, 分析了2020年6月7日夜间-8日珠三角(珠江三角洲)北部暖区强降水过程中主雨带与南岭南部地形走势一致的原因, 阐释地形对此次强降水的触发和维持作用。结果表明: (1)此次过程发生在典型的暖区暴雨环流特征的背景下, 主要影响系统为对流层中层弱短波槽扰动、低空急流和边界层急流脉冲等; (2)雷达回波表现为团状结构, 多以对流单体形态生消, 伴随明显的"列车效应"现象, 但3个不同发展阶段内回波的持续时间、强度, 以及触发地、传播和移动方向等均存在差异; (3)由于边界层西南(偏南)风增强和地形作用, 新的对流单体在珠江口附近和珠三角西北侧被触发, 同时由于南岭南侧地形对边界层暖湿气流的阻挡和拦截等作用, 使得气流在珠三角北部形成明显的辐合抬升, 造成该区域内对流单体移速减慢和汇聚, 增强了降水强度; (4)强降水长时间的持续与海陆热力差异、冷池和边界层暖湿气流增强等引起的地面露点锋和中尺度辐合线有关。露点锋为强降水的发展和维持提供了热力不稳定条件, 地面辐合线加强了对流层底层气流的辐合抬升, 进一步增强了强降水区的降水强度。研究结果有助于认识珠三角北部暖区强降水过程中地形的重要作用, 为今后该区域防灾减灾提供气象理论支撑。   相似文献   

20.
为了研究副热带高压(副高)背景下极端短时强降水系统的动力和云物理结构特征,利用厦门X波段双偏振相控阵雷达观测数据,采用多普勒雷达风场反演技术并结合高精度的地形数据,对2021年8月11日发生在厦门地区的一次极端短时强降水事件进行了分析。研究表明:(1)这次过程发生在副高控制之下,具有弱天气尺度强迫特征。地面辐合线促进了线状对流系统的形成,其后向传播过程导致了局地极端强降水的发生。(2)对流系统的中层存在大粒子累积区,大粒子的下泻导致雨强增大。倾斜上升(下沉)气流的配置使得大粒子的下泻不会影响上升气流,有利于对流系统的发展与维持。下沉气流与偏南气流相遇触发了上游对流系统的发展,形成后向传播。(3)在弱天气尺度系统背景下,局地地形对于降水系统的影响得以凸显。地形造成的低层辐合使得差分反射率因子(ZDR)、差分传播相移率(KDP)等双偏振参数在迎风坡处明显增大,且大值区在此处维持。更大、更浓密的降水粒子形成了极高的降雨效率。(4)暖雨过程和冰相过程在这次极端降水事件中并存,前者对雨水的形成起主导作用,冰相粒子的融化加速了这一进程。(5)强降水时雨滴的破碎和碰并趋于平衡,雨强的增大取决于雨滴浓度的升高。因此,KDP可作为判断雨强是否增大的指标。(6) ZDR柱与KDP柱的演变对于地面雨强的变化具有预示性,特别是在持续降水过程中,ZDR(KDP)柱的再度发展预示着降水系统的再次增强。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号