首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
On the basis of the mean air temperature, precipitation, sunshine duration, and pan evaporation from 23 meteorological stations in the upper Yellow River Basin from 1960 to 2001, the feasibility of using hypothesis test techniques to detect the long-term trend for major climate variables has been investigated. Parametric tests are limited by the assumptions such as the normality and constant variance of the error terms. Nonparametric tests have not these additional assumptions and are better adapted to the trend test for hydro-meteorological time series. The possible trends of annual and monthly climatic time series are detected by using a non-parametric method and the abrupt changes have been examined in terms of 5-yr moving averaged seasonal and annual series by using moving T-test (MTT) method, Yamamoto method, and Mann-Kendall method. The results show that the annual mean temperature has increased by 0.8℃in the upper Yellow River Basin during the past 42 years. The warmest center was located in the northern part of the basin. The nonlinear tendency for annual precipitation was negative during the same period. The declining center for annual precipitation was located in the eastern part and the center of the basin. The variation of annual precipitation in the upper Yellow River Basin during the past 42 years exhibited an increasing tendency from 1972 to 1989 and a decreasing tendency from 1990 to 2001. The nonlinear tendencies for annual sunshine duration and pan evaporation were also negative. They have decreased by 125.6 h and 161.3 mm during the past 42 years, respectively. The test for abrupt changes by using MTT method shows that an abrupt wanning occurred in the late 1980s. An abrupt change of the annual mean precipitation occurred in the middle 1980s and an abrupt change of the mean sunshine duration took place in the early 1980s. For the annual mean pan evaporation, two abrupt changes took place in the 1980s and the early 1990s. The test results of the Yamamoto method show that the abrupt changes mostly occurred in the 1980s, and two acute abrupt changes were tested for the spring pan evaporation in 1981 and for the annual mean temperature in 1985. According to the Mann-Kendall method, the abrupt changes of the temperature mainly occurred in the 1990s, the pan evaporation abrupt changes mostly occurred in the 1960s, and the abrupt changes of the sunshine duration primarily took place in the 1980s. Although the results obtained by using three methods are different, it is undoubted that jumps have indeed occurred in the last four decades.  相似文献   

2.
Evaporation is an important component of surface heat and water balance, and is affected directly by land use and climate change. This paper studies the changes of evaporation in China associated with the global climate change, and explores characteristics of the corresponding regional water cycle variations. The 20-cm-caliber pan evaporation measurements collected from 427 meteorological stations in China from 1957 to 2001 are analyzed to disclose the small-pan evaporation variation trend in China and the associated causes. The results show that although the annual average temperature over China exhibits an upward tendency of 0.2°C/10 yr for the past 45 years,the pan evaporation on the whole has decreased by -34.12mm/10 yr. Nonetheless, a significant increase of pan evaporation is observed in a few areas such as the northern part of the Greater Hingan Mountains in Northeast China and the Beishan Mountains in Inner Mongolia. The largest decrease of pan evaporation lies in East China, northern parts of Northwest China,South China, and southern Tibet. An analysis of energy balance and aerodynamics using Penman's formula proves that the drop of pan evaporation in East China is mainly due to a significant decline of source energy for evaporation, while that in West China is mostly attributed to an aerodynamic reduction. The analysis on tendencies of various meteorological and other related factors shows that wind speed and sunshine hours are two most important factors causing the pan evaporation reduction in China.  相似文献   

3.
Trends in graded precipitation in China from 1961 to 2000   总被引:3,自引:0,他引:3  
Daily precipitation rates observed at 576 stations in China from 1961 to 2000 were classified into six grades of intensity, including trace (no amount), slight (≤ 1 mm d^-1), small, large, heavy, and very heavy. The last four grades together constitute the so called effective precipitation (〉 1 mm d^-1). The spatial distribution and temporal trend of the graded precipitation days are examined. A decreasing trend in trace precipitation days is observed for the whole of China, except at several sites in the south of the middle section of the Yangtze River, while a decreasing trend in slight precipitation days only appears in eastern China. The decreasing trend and interannual variability of trace precipitation days is consistent with the warming trend and corresponding temperature variability in China for the same period, indicating a possible role played by increased surface air temperature in cloud formation processes. For the effective precipitation days, a decreasing trend is observed along the Yellow River valley and for the middle reaches of the Yangtze River and Southwest China, while an increasing trend is found for Xinjiang, the eastern Tibetan Plateau, Northeast China and Southeast China. The decreasing trend of effective precipitation days for the middle- lower Yellow River valley and the increasing trend for the lower Yangtze River valley are most likely linked to anomalous monsoon circulation in East China. The most important contributor to the trend in effective precipitation depends upon the region concerned.  相似文献   

4.
Spatio-temporal variation of actual evapotranspiration (ETa) in the Pearl River basin from 1961 to 2010 are analyzed based on daily data from 60 national observed stations. ETa is calculated by the Advection-Aridity model (AA model) in the current study, and Mann–Kendall test (MK) and Inverse Distance Weighted interpolation method (IDW) were applied to detect the trends and spatial variation pattern. The relations of ETa with climate parameters and radiation / dynamic terms are analyzed by Person correlation method. Our findings are shown as follows: 1) Mean annual ETa in the Pearl River basin is about 665.6 mm/a. It has significantly decreased in 1961–2010 at a rate of -24.3 mm/10a. Seasonally, negative trends of summer and autumn ETa are higher than that of spring and winter. 2) The value of ETa is higher in the southeast coastal area than in the northwest region of the Pearl River basin, while the latter has shown the strongest negative trend. 3) Negative trends of ETa in the Pearl River basin are most probably due to decreasing radiation term and increasing dynamic term. The decrease of the radiation term is related with declining diurnal temperature range and sunshine duration, and rising atmospheric pressure as well. The contribution of dynamic term comes from increasing average temperature, maximum and minimum temperatures in the basin. Meanwhile, the decreasing average wind speed weakens dynamic term and finally, to a certain extent, it slows down the negative trend of the ETa.  相似文献   

5.
The observed long-term trends in extreme temperatures in Hong Kong were studied based on the meteorological data recorded at the Hong Kong Observatory Headquarters from 1885-2008. Results show that, over the past 124 years, the extreme daily minimum and maximum temperatures, as well as the length of the warm spell in Hong Kong, exhibit statistically significant long-term rising trends, while the length of the cold spell shows a statistically significant decreasing trend. The time-dependent return period analysis also indicated that the return period for daily minimum temperature at 4°C or lower lengthened considerably from 6 years in 1900 to over 150 years in 2000, while the return periods for daily maximum temperature reaching 35°C or above shortened drastically from 32 years in 1900 to 4.5 years in 2000. Past trends in extreme temperatures from selected weather stations in southern China from 1951-2004 were also assessed. Over 70% of the stations studied yielded a statistically significant rising trend in extreme daily minimum temperature, while the trend for extreme maximum temperatures was found to vary, with no significant trend established for the majority of stations.  相似文献   

6.
With the development of urbanization, whether precipitation characteristics in Guangdong Province, China, from 1981 to 2015 have changed are investigated using rain gauge data from 76 stations. These characteristics include annual precipitation, rainfall frequency, intense rainfall(defined as hourly precipitation ≥ 20 mm), light precipitation(defined as hourly precipitation ≤ 2.5 mm), and extreme rainfall(defined as hourly rainfall exceeding the 99.9 th percentile of the hourly rainfall distribution). During these 35 years, the annual precipitation shows an increasing trend in the urban areas.While rainfall frequency and light precipitation have a decreasing trend, intense rainfall frequency shows an increasing trend. The heavy and extreme rainfall frequency both exhibit an increasing trend in the Pearl River Delta region, where urbanization is the most significant. These trends in both the warm seasons(May-October) and during the pre-flood season(April-June) appear to be more significant. On the contrary, the annual precipitation amount in rural areas has a decreasing trend. Although the heavy and extreme precipitation also show an increasing trend, it is not as strong and significant as that in the urban areas. During periods in which a tropical cyclone makes landfall along the South China Coast, the rainfall in urban areas has been consistently more than that in surrounding areas. The precipitation in the urban areas and to their west is higher after 1995, when the urbanization accelerated. These results suggest that urbanization has a significant impact on the precipitation characteristics of Guangdong Province.  相似文献   

7.
中国均一化日平均温、最高温和最低温序列1960-2008   总被引:8,自引:0,他引:8       下载免费PDF全文
Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects i  相似文献   

8.
Because of its unique geographical location and ecological function, the Liaohe Delta Wetland is important in maintaining regional ecological balance and security. Monitoring and evaluating changes in the wetland are therefore of great importance. We used medium-and high-resolution satellite data, meteorological station data, and site measurement data to analyze changes in the area and spatial distribution of Phragmites australis and Suaeda salsa in the Liaohe Delta Wetland from 1998 to 2017, as well as their growth response to the climate change. The results showed that during 1998–2017, the areas of both P. australis and S. salsa wetlands alternated through periods of decreasing,increasing, and then decreasing trends. The annual change in the area and spatial distribution range of S. salsa fluctuated more than that of P. australis. The annual variation of normalized difference vegetation index(NDVI) in P. australis wetland showed an upward trend from 1998 to 2017. The area of P. australis cover that was improved, unchanged, and decreased accounted for 81.8%, 12.3%, and 5.9%, respectively, of the total area;evaporation and wind speed were the main meteorological factors affecting the NDVI;and contribution rates of the climate change and human activities to the NDVI were 73.2% and 26.8%, respectively. The area with vegetation cover being mainly S.salsa that was improved, unchanged, and decreased accounted for 63.3%, 18.3%, and 18.4%, respectively, of the total area;and no meteorological factors significantly affected the NDVI of S. salsa in the region. The interaction between vegetation growth and meteorological factors may help to explain the increasing trend in vegetation cover.The improvement in wetland vegetation also led to carbon sequestration and an increase in sequestration capacity.  相似文献   

9.
Identifying Regional Prolonged Low Temperature Events in China   总被引:6,自引:0,他引:6  
This study examined regional prolonged low temperature (PLT) events in China from the observational station data for the period 1960–2008 using the new criteria. The new definition of a site PLT event is that the daily minimum temperature does not exceed the 10th percentile threshold of the local daily minimum temperature climatology for at least 5 days at a station. The regional PLT event is defined as at least five adjacent stations exhibiting site PLT simultaneously for >5 d. Under the new definition, 552 regional PLT events were identified, and three indices: duration, extent, and intensity, as well as a comprehensive index (CI) were used to quantify the event severity. In addition, geographical patterns and temporal variations of regional PLT events were investigated using three event categories: strong, moderate, and weak. Spatially, strong events were mainly located in the north of Xinjiang and along the Yangtze River to the south of the Yangtze River; moderate events occurred in Xinjiang and south of the Yangtze River; and weak events occurred south of the Yellow River. The variation for the annual frequency of regional PLT events in China in the last 49 years showed a significant decreasing trend with a rate of-1.99 times per decade, and the significant transition decade was the 1980s.  相似文献   

10.
Based on China's observational data in 1951-1990,after minimizing the possible biasescaused by station relocation and urban heat island,the spatial and temporal distributions of trendsfor maximum and minimum temperatures are studied.The results show that increasing trends ofmaximum temperatures are in the areas west to 95°E,and north to the Huanghe(Yellow)River,while decreasing trends exist in eastern China south to the Yellow River.Minimum temperaturesare generally increasing throughout China,with dominant warming trends at the higher latitudes.This resulted in very obvious decreasing trends in diurnal temperature ranges.The periodic cycles are consistent between the maximum and minimum temperatures,butasymmetric trends are very obvious.The significant increase of minimum(nighttime)temperaturesreflects the evidence of enhancement of greenhouse effect.Further analysis shows that the changesof maximum and minimum temperatures are mainly related to sunshine duration and atmosphericwater vapor content.  相似文献   

11.
This study analyzed the interdecadal changes in the diurnal variability of summer(June-August) precipitation over eastern China during the period 1966-2005 using hourly station rain gauge data.The results revealed that rainfall diurnal variations experienced significant interdecadal changes.Over the area to the south of the Yangtze River,as well as the area between the Yangtze and Yellow Rivers,the percentages of morning rainfall(0000-1200 LST) to total rainfall in terms of amount,frequency and intensity,all exhibited increasing interdecadal trends.On the contrary,over North China,decreasing trends were found.As a result,diurnal rainfall peaks also presented pronounced interdecadal variations.Over the area between the Yangtze and Yellow Rivers,there were 16 out of 46 stations with afternoon(1200-0000 LST) frequency peaks in the first 20 years of the 40-year period of study,while only eight remained in the latter 20 years.In North China,seven stations experienced the opposite changes,which accounted for about 21% of the total number of stations.The possible causes for the interdecadal changes in diurnal features were discussed.As the rainfall in the active monsoon period presents morning diurnal peaks,with afternoon peaks in the break period,the decrease(increase) of rainfall in the active monsoon period over North China(the area south of the Yangtze River and the area between the Yangtze and Yellow Rivers) may contribute to interdecadal changes in diurnal rainfall variability.  相似文献   

12.
A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events in China during the period1961–2012. In total, 373 regional heavy rainfall events(RHREs) were identified during the past 52 years. The East Asian summer monsoon(EASM) had an important influence on the annual variations of China's RHRE activities, with a significant relationship between the intensity of the RHREs and the intensity of the Mei-yu. Although the increase in the frequency of those RHREs was not significant, China experienced more severe and extreme regional rainfall events in the 1990 s. The middle and lower reaches of the Yangtze River and the northern part of South China were the regions in the country most susceptible to extreme precipitation events. Some stations showed significant increasing trends in the southern part of the middle and lower reaches of the Yangtze River and the northern part of South China, while parts of North China, regions between Guangxi and Guangdong, and northern Sichuan showed decreasing trends in the accumulated intensity of RHREs.The spatial distribution of the linear trends of events' accumulated intensity displayed a similar so-called "southern flooding and northern drought" pattern over eastern China in recent decades.  相似文献   

13.
By comparing two sets of quality-controlled daily temperature observation data with and without the inhomogeneity test and adjustment from 654 stations in China during 1956-2004 and 1956-2010, impacts of inhomogeneity on changing trends of four percentile temperature extreme indices, including occurrences of cold days, cold nights, warm days, and warm nights with varying intensities, were discussed. It is found that the inhomogeneity affected the long-term trends averaged over extensive regions limitedly. In order to minimize the inhomogeneity impact, the 83 stations identified with obvious inhomogeneity impacts were removed, and an updated analysis of changing trends of the four temperature extreme indices with varying intensities during 1956-2010 was conducted. The results show that annual occurrences of both cold nights and cold days decreased greatly while those of warm nights and warm days increased significantly during the recent 20 years. The more extreme the event is, the greater the magnitude of changing trends for the temperature extreme index is. An obvious increasing trend was observed in annual occurrences of cold days and cold nights in the recent four years. The magnitude of changing trends of warm extreme indices was greater than that of cold extreme indices, and it was greater in northern China than in southern China. Trends for summer occurrence of cold days were not significant. Decreasing trends of occurrences of both cold nights and cold days were the greatest in December, January, and February (DJF) but the least in June, July, and August (JJA), while increasing trends of warm nights were the greatest in JJA. Cold nights significantly decreased from 1956 to 1990, and then the decreasing trend considerably weakened. The decreasing trend also showed an obvious slowdown in recent years for occurrence of cold days. However, increasing trends of warm nights and warm days both have been accelerated continuously since the recent decades. Further analysis presents that the evolution of the trends for occurrences of the four temperature extreme indices was dominated by the changes in northern China.  相似文献   

14.
The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled soil moisture and runoff with limited observations in the basin suggests a general drying trend in simulated soil moisture,runoff,and precipitation-evaporation balance(P-E) in most areas of the Yellow River basin during the observation period.Furthermore,annual soil moisture,runoff,and P-E averaged over the entire basin have declined by 3.3%,82.2%,and 32.1%,respectively.Significant drying trends in soil moisture appear in the upper and middle reaches of the basin,whereas a significant trend in declining surface runoff and P-E occurred in the middle reaches and the southeastern part of the upper reaches.The overall decreasing water availability is characterized by large spatial and temporal variability.  相似文献   

15.
Surface energy balance and the partitioning of sensible heat flux(SHF) and latent heat flux(LHF) play key roles in land–atmosphere feedback. However,the lack of long-term observations of surface energy fluxes,not to mention spatially extensive ones,limits our understanding of how the surface energy distribution has responded to a warming climate over recent decades(1979–2009) at the national scale in China. Using four state-of-the-art reanalysis products with long-term surface energy outputs,we identified robust changes in surface energy partitioning,defined by the Bowen ratio(BR = SHF/LHF),over different climate regimes in China. Over the past three decades,the net radiation showed an increasing trend over almost the whole of China. The increase in available radiative energy flux,however,was balanced by differential partitioning of surface turbulent fluxes,determined by local hydrological conditions. In semi-arid areas,such as Northeast China,the radiative energy was transferred largely into SHF. A severe deficiency in near-surface and soil moistures led to a significant decreasing trend in LHF. The combined effect of increased SHF and decreased LHF resulted in significant upward trends in the BR and surface warming over Northeast China. In contrast,in the wet monsoon regions,such as southern China,increased downward net radiation favored a rise in LHF rather than in SHF,leading to a significant decreasing trend in the BR. Meanwhile,the increased LHF partly cancelled out the surface warming. The warming trend in southern China was smaller than that in Northeast China. In addition to impacts on heat-related events,the changes in the BR also reflected recent cases of extreme drought in China. Our results indicate that information regarding the BR may be valuable for drought monitoring,especially in regions prone to such conditions.  相似文献   

16.
The number of haze days and daily visibility data for 543 stations in China were used to define the probabilities of four grades of haze days: slight haze(SLH) days; light haze(LIH) days; moderate haze(MOH) days; and severe haze(SEH) days. The change trends of the four grades of haze were investigated and the following results were obtained. The highest probability was obtained for SLH days(95.138%), which showed a decreasing trend over the last54 years with the fastest rate of decrease of-0.903% ·(10 years)-1 and a trend coefficient of-0.699, passing the 99.9%confidence level. The probabilities of LIH and MOH days increased steadily, whereas the probability of SEH days showed a slight downward trend during that period. The increasing probability of SLH days was mainly distributed to the east of 105°E and the south of 42°N and the highest value of the trend coefficient was located in the Pearl River Delta and Yangtze River Delta regions. The increasing probability of LIH days was mainly distributed in eastern China and the southeastern coastal region. The probabilities of MOH and SEH days was similar to the probability of LIH days. An analysis of the four grades of haze days in cities with different sizes suggested that the probability of SLH days in large cities and medium cities clearly decreased during the last 54 years. However, the probabilities of LIH days was 10% and increased steadily. The probability of MOH days showed a clear interdecadal fluctuation and the probability of SEH days showed a weak upward trend. The probability of SLH days in small cities within 0.8° of large or medium cities decreased steadily, but the probability of LIH and MOH days clearly increased, which might be attributed to the impact of large and medium cities. The probability of SLH days in small cities 1.5° from a large or medium city showed an increasing trend and reached 100% after 1990; the probability of the other three grades was small and decreased significantly.  相似文献   

17.
Using the high-quality observed meteorological data, changes of the thermal conditions and precipitation over the North China Plain from 1961 to 2009 were examined. Trends of accumulated temperature and negative temperature, growing season duration, as well as seasonal and annual rainfalls at 48 stations were analyzed. The results show that the accumulated temperature increased significantly by 348.5℃ day due to global warming during 1961-2009 while the absolute accumulated negative temperature decreased apparently by 175.3℃ day. The start of growing season displayed a significant negative trend of -14.3 days during 1961- 2009, but the end of growing season delayed insignificantly by 6.7 days. As a result, the length of growing season increased by 21.0 days. The annual and autumn rainfalls decreased slightly while summer rainfall and summer rainy days decreased significantly. In contrast, spring rainfall increased slightly without significant trends. All the results indicate that the thermal conditions were improved to benefit the crop growth over the North China Plain during 1961-2009, and the decreasing annual and summer rainfalls had no direct negative impact on the crop growth. But the decreasing summer rainfall was likely to influence the water resources in North China, especially the underground water, reservoir water, as well as river runoff, which would have influenced the irrigation of agriculture.  相似文献   

18.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

19.
 Based on tropical cyclone track dataset in the western North Pacific from China Meteorological Administration (CMA), variations in frequency and intensity of tropical cyclones (TCs) in the western North Pacific, affecting-China TCs (ACTCs) and landfall TCs (LTCs) achieving a typhoon intensity during 1957-2004 were studied. Frequencies of strong tropical cyclones showed significant decreasing trends from 1957 to 2004 and the linear trend was much greater when the intensity was stronger. There was no linear trend in the portion of strong tropical cyclones achieving a typhoon (TY) intensity, while those reaching a strong typhoon (STY) and a super typhoon (SuperTY) intensity showed decreasing trends during 1957-2004. The maximum intensities of TCs, ACTCs and LTCs all decreased during the period of 1957-2004. The mean intensities of TCs and ACTCs displayed decreasing trends and the mean intensity of LTCs achieving a TY intensity also showed a decreasing trend.  相似文献   

20.
A new short-term climatic prediction model based on the singular value decomposition (SVD) iteration was designed with solid mathematics and strict logical reasoning. Taking predictors into prediction model, using iteration computation, and substituting the last results into the next computation, we can acquire better results with improved precision. Precipitation prediction experiments were separately done for 16 stations in North China and 30 stations in the mid-lower catchment of the Yangtze River during 1991-2000. Their average mean square errors are 0.352 and 0.312, and the results are very stable. Mean square errors of 9 yr are less than 0.5 while only that of 1 yr is more than 0.5. The mean sign correlation coefficients between forecast and observed summer precipitation during 1991-2000 are 0.575 in North China and 0.623 in the mid-lower catchment of the Yangtze River. Librations of them in North China during the 10 years are small. Only in 1996 the sign correlation coefficient is below 0.5; the others are all over 0.5. But sign correlation coefficients in the mid-lower catchment of the Yangtze River vary obviously. The lowest is only 0.3 in 1992, and the highest is 0.9 in 1998, As the distribution of the forecast precipitation anomaly field in the summer 1998 of is examined, it is known that the model captured the positive and negative anomalyies of precipitation, and also well forecasted the anomaly distributions. But the errors are obvious in quantities between the forecast and the observed precipitation anomalies. Climate characteristics of large scale meteorological elements, such as summer precipitation have obvious differences in spatial distribution. We can forecast better if we divide a big region into many subregions according to the discrepancy of climatic characteristics in the region, and predict in each subregion. The research shows that the model of SVD iteration is a very effective forecast model and has a strongly applicable value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号