首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wavelet analysis is applied to zonal mean zonal wind and temperature fields to represent characteristics of temporal periodic features different from the annual and semi-annual recurrence in the troposphere and stratosphere. A daily database of reanalyses is used for the period 1979–2008, which comprises the era of satellite-based data, as some discontinuities have been observed around 1978 in previous studies. Levels for this study have been chosen at 400 and 10 hPa, respectively in the middle troposphere and middle stratosphere. As representative for diverse latitudinal regions we have respectively selected 0°, ±20°, ±40°, ±60°, ±80°. Significant features were only found at the equator. The period of the quasi-biennial oscillation (QBO) is found to exhibit a decreasing trend in time over the 30 years studied. Potential harmonics of the QBO are found in the tropical stratosphere but also troposphere. However, they do not exhibit the same tendency. This fact supports in particular the idea that the QBO and the tropospheric biennial oscillation may be unrelated phenomena. Some of the observed features lie within the known range of variability of the El Niño Southern Oscillation. Faint effects of the 11-year solar cycle variability may have been observed in the troposphere and stratosphere, but no firm assertion may be made due to the low number of observed cycles for this kind of phenomenon in the used data-set time span. Short-term solar variabilities leave no relevant imprint.  相似文献   

2.
The National Centers for Environmental Prediction (NCEP) reanalysis data on tropospheric humidity are examined for the period 1973 to 2007. It is accepted that radiosonde-derived humidity data must be treated with great caution, particularly at altitudes above the 500 hPa pressure level. With that caveat, the face-value 35-year trend in zonal-average annual-average specific humidity q is significantly negative at all altitudes above 850 hPa (roughly the top of the convective boundary layer) in the tropics and southern midlatitudes and at altitudes above 600 hPa in the northern midlatitudes. It is significantly positive below 850 hPa in all three zones, as might be expected in a mixed layer with rising temperatures over a moist surface. The results are qualitatively consistent with trends in NCEP atmospheric temperatures (which must also be treated with great caution) that show an increase in the stability of the convective boundary layer as the global temperature has risen over the period. The upper-level negative trends in q are inconsistent with climate-model calculations and are largely (but not completely) inconsistent with satellite data. Water vapor feedback in climate models is positive mainly because of their roughly constant relative humidity (i.e., increasing q) in the mid-to-upper troposphere as the planet warms. Negative trends in q as found in the NCEP data would imply that long-term water vapor feedback is negative—that it would reduce rather than amplify the response of the climate system to external forcing such as that from increasing atmospheric CO2. In this context, it is important to establish what (if any) aspects of the observed trends survive detailed examination of the impact of past changes of radiosonde instrumentation and protocol within the various international networks.  相似文献   

3.
4.
Driving data and physical parametrizations can significantly impact the performance of regional dynamical atmospheric models in reproducing hydrometeorologically relevant variables. Our study addresses the water budget sensitivity of the Weather Research and Forecasting Model System WRF (WRF-ARW) with respect to two cumulus parametrizations (Kain–Fritsch, Betts–Miller–Janji?), two global driving reanalyses (ECMWF ERA-INTERIM and NCAR/NCEP NNRP), time variant and invariant sea surface temperature and optional gridded nudging. The skill of global and downscaled models is evaluated against different gridded observations for precipitation, 2 m-temperature, evapotranspiration, and against measured discharge time-series on a monthly basis. Multi-year spatial deviation patterns and basin aggregated time series are examined for four globally distributed regions with different climatic characteristics: Siberia, Northern and Western Africa, the Central Australian Plane, and the Amazonian tropics. The simulations cover the period from 2003 to 2006 with a horizontal mesh of 30 km. The results suggest a high sensitivity of the physical parametrizations and the driving data on the water budgets of the regional atmospheric simulations. While the global reanalyses tend to underestimate 2 m-temperature by 0.2–2 K, the regional simulations are typically 0.5–3 K warmer than observed. Many configurations show difficulties in reproducing the water budget terms, e.g. with long-term mean precipitation biases of 150 mm month?1 and higher. Nevertheless, with the water budget analysis viable setups can be deduced for all four study regions.  相似文献   

5.
The main purpose of this work is to report the presence of spurious discontinuities in the pattern of diurnal variation of sea level pressure of the three reanalysis datasets from: the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Science (R1), the NCEP and Department of Energy (R2), and the European Centre for Medium Range Weather Forecasting (ERA-40). Such discontinuities can be connected to the major changes in the global observing system that have occurred throughout reanalyses years. In the R1, the richest period in discontinuities is 1956–1958, coinciding with the start of modern radiosonde observation network. Rapid increase in the density of surface-based observations from 1967 also had an important impact on both R1 and ERA-40, with larger impact on R1. The reanalyses show discontinuities in the 1970s related to the assimilation of radiances measured by the Vertical Temperature Profile Radiometer and TIROS-N Operational Vertical Sounders onboard satellites. In the ERA-40, which additionally assimilated Special Sensor Microwave/Imager data, there are discontinuities in 1987–1989. The R1 also presents further discontinuities, in 1988–1993 likely connected to replacement/introduction of NOAA-series satellites with different biases, and to the volcanic eruption of Mount Pinatubo in June 1991, which is known to have severely affected measurements of infrared radiances for several years. The discontinuities in 1996–1998 might be partially connected to change in the type of radiosonde, from VIZ-B to VIZ-B2. The R2, which covers only satellite era (1979-on), shows discontinuities mainly in 1992, 1996–1997, and 2001. The discontinuities in 1992 and 2001 might have been caused by change in the satellite measurements and those in 1996–1997 by some changes in land-based observations network.  相似文献   

6.
The summer monsoon onset over southern Vietnam is determined through a new criterion based on both in situ daily rainfall at six selected stations provided by the Institute of Meteorology and Hydrology, Vietnam, and the zonal component of the wind at 1,000 hPa from the National Center for Environmental Prediction/Department of Energy Reanalysis 2. Over the period 1979–2004, the summer monsoon onset mean date is on 12 May, with a standard deviation of 11.6 days. The temporal and spatial structures of the atmospheric conditions prevailing during the onset period are detailed. Clear changes are seen in the zonal wind (strengthened over the Bay of Bengal and changed from negative to positive over South Vietnam) and in convection (deeper), in association with an intensification of the meridional gradients of sea level pressure at 1,000 hPa and of moist static energy at 2 m over Southeast Asia. The predictability of onset dates is then assessed. Cross-validated hindcasts based upon four predictors linked to robust signals in the atmospheric dynamics are then provided. They are highly significant when compared to observations (56% of common variance). Basically, late (early) onsets are preceded in March–April by higher (lower) sea level pressure over the East China Sea, stronger (weaker) southeasterly winds over southern Vietnam, decreasing (increasing) deep convection over the Bay of Bengal, and the reverse situation over Indonesia (120–140°E, 0–10°S).  相似文献   

7.
Global hydrographic and air–sea freshwater flux datasets are used to investigate ocean salinity changes over 1950–2010 in relation to surface freshwater flux. On multi-decadal timescales, surface salinity increases (decreases) in evaporation (precipitation) dominated regions, the Atlantic–Pacific salinity contrast increases, and the upper thermocline salinity maximum increases while the salinity minimum of intermediate waters decreases. Potential trends in E–P are examined for 1950–2010 (using two reanalyses) and 1979–2010 (using four reanalyses and two blended products). Large differences in the 1950–2010 E–P trend patterns are evident in several regions, particularly the North Atlantic. For 1979–2010 some coherency in the spatial change patterns is evident but there is still a large spread in trend magnitude and sign between the six E–P products. However, a robust pattern of increased E–P in the southern hemisphere subtropical gyres is seen in all products. There is also some evidence in the tropical Pacific for a link between the spatial change patterns of salinity and E–P associated with ENSO. The water cycle amplification rate over specific regions is subsequently inferred from the observed 3-D salinity change field using a salt conservation equation in variable isopycnal volumes, implicitly accounting for the migration of isopycnal surfaces. Inferred global changes of E–P over 1950–2010 amount to an increase of 1 ± 0.6 % in net evaporation across the subtropics and an increase of 4.2 ± 2 % in net precipitation across subpolar latitudes. Amplification rates are approximately doubled over 1979–2010, consistent with accelerated broad-scale warming but also coincident with much improved salinity sampling over the latter period.  相似文献   

8.
Trends and variability in column-integrated atmospheric water vapor   总被引:4,自引:0,他引:4  
An analysis and evaluation has been performed of global datasets on column-integrated water vapor (precipitable water). For years before 1996, the Ross and Elliott radiosonde dataset is used for validation of European Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-40. Only the special sensor microwave imager (SSM/I) dataset from remote sensing systems (RSS) has credible means, variability and trends for the oceans, but it is available only for the post-1988 period. Major problems are found in the means, variability and trends from 1988 to 2001 for both reanalyses from National Centers for Environmental Prediction (NCEP) and the ERA-40 reanalysis over the oceans, and for the NASA water vapor project (NVAP) dataset more generally. NCEP and ERA-40 values are reasonable over land where constrained by radiosondes. Accordingly, users of these data should take great care in accepting results as real. The problems highlight the need for reprocessing of data, as has been done by RSS, and reanalyses that adequately take account of the changing observing system. Precipitable water variability for 1988–2001 is dominated by the evolution of ENSO and especially the structures that occurred during and following the 1997–98 El Niño event. The evidence from SSM/I for the global ocean suggests that recent trends in precipitable water are generally positive and, for 1988 through 2003, average 0.40±0.09 mm per decade or 1.3±0.3% per decade for the ocean as a whole, where the error bars are 95% confidence intervals. Over the oceans, the precipitable water variability relates very strongly to changes in SSTs, both in terms of spatial structure of trends and temporal variability (with a regression coefficient for 30°N–30°S of 7.8% K?1) and is consistent with the assumption of fairly constant relative humidity. In the tropics, the trends are also influenced by changes in rainfall which, in turn, are closely associated with the mean flow and convergence of moisture by the trade winds. The main region where positive trends are not very evident is over Europe, in spite of large and positive trends over the North Atlantic since 1988. A much longer time series is probably required to obtain stable patterns of trends over the oceans, although the main variability could probably be deduced from past SST and associated precipitation variations.  相似文献   

9.
利用1979—2015年中国国家气候中心整编的160站月平均气温和NCEP/NCAR全球大气再分析资料,从1979/1980—2008/2009年冬季前期500 h Pa高度场、200 h Pa势函数和850 h Pa势函数场选择预测因子,考虑不同时效因子的组合及其独立性,综合应用多因子回归集合、交叉检验集合、逐月滚动集合,建立了针对中国冬季气温的逐月滚动预测模型,并利用该模型对2010/2011—2014/2015年冬季气温进行了独立预测试验和检验。结果表明,综合运用多种集合可提高短期气候客观定量预测的可行性和稳定性。多因子回归集合能增加可预测站点数,交叉检验集合可减少因统计关系不稳定而产生的对预报效果的影响,逐月滚动集合的应用不仅增加了可预测站点数,而且使预测效果更加稳定。本文建立的预测模型可对中国冬季气温进行长时效的预测,且有一定的预报技巧,对实际的季节预测业务有重要应用价值。  相似文献   

10.
Pawson  S.  Fiorino  M. 《Climate Dynamics》1998,14(9):645-658
 Reanalysis datasets potentially offer the opportunity to examine the tropical quasi-biennial oscillation (QBO) in greater detail than in the past, including the associated meridional circulation and the links with other parts of the atmosphere. For such studies to be useful, the QBO represented by the reanalyses should be realistic. In this work, the QBO in the ERA and NCEP reanalyses is validated against rawinsonde observations from Singapore. Monthly mean data are used. In the lower stratosphere (at 50 hPa and 30 hPa) the ERA QBO is reasonable, although the wind extrema in both phases are too weak and the vertical shear and the temperature anomalies are too small. The NCEP QBO is weaker still. At 10 hPa neither reanalysis system performs well, both systems failing to reproduce the westerlies, possibly because of the proximity of the upper boundary. The Singapore wind is representative of the zonal means in the reanalyses. The weak wind extrema in the reanalyses would not support a wave-mean flow interaction theory of the QBO, because a large portion of the gravity wave spectrum which would be absorbed in reality would be transmitted beyond 10 hPa. The stronger shear zones captured in the ERA data are associated with larger, more realistic temperature perturbations near 30 hPa. The northward velocities in the NCEP data show a more realistic structure than in the ERA reanalysis, where they are dominated by a vertical “gridpoint wave” structure in the lowermost stratosphere. Despite the shortcomings of the reanalyses, the high correlations of the wind at 30 hPa and 50 hPa with the observations at Singapore mean that the reanalyses could potentially be used to examine the effects of the QBO away from the tropical stratosphere. Future reanalyses need to take full account of the wind shears evident in the rawinsonde observations and use models with an adequate resolution to capture these vertical scales. Received: 23 June 1997/Accepted 17 December 1998  相似文献   

11.
Based on three groups of datasets that include radiosondes, reanalyses, and climate model simulations (e.g., Coupled Model Intercomparison Project, CMIP3) from 1979 to 2008, the interannual variability, global temperature trends, and their uncertainty using ensemble spread among intra-group and inter-group datasets have been discussed. The results show that the interannual temperature variability increased from the troposphere to stratosphere, and the maximum occurs around 50?hPa. The CMIP3 climate models have the largest discrepancy in the stratosphere. The intra-group correlations at 500?hPa generally show high similarity within each data group while the inter-group correlations between reanalyses and the CMIP3 climate model simulations indicate lesser similarity. In contrast, the inter-group correlation at 50?hPa is improved except with the Japanese 25-year Reanalysis Project (JRA-25) dataset, and the Twentieth Century Reanalysis (20CR) reanalysis shows a weak cross correlation. The global temperature trends are highly dependent on the individual data sources. Compared to the radiosondes, the reanalyses show a large ensemble spread of trends in the stratosphere, and the CMIP3 climate model simulations have a large ensemble spread in the height of the crossover point where tropospheric warming changes into stratospheric cooling. The largest ensemble spread among the reanalyses in the stratosphere is mainly from the large discrepancy in the JRA-25 reanalysis after 1998 and a relatively weak anomaly in the 20CR before 1986. The largest ensemble spread among the CMIP3 climate models in the troposphere is related to the influence of both volcanic eruptions and El Ni?o/La Ni?a–Southern Oscillation events. The strong anomalies corresponding to the volcanic eruptions of El Chichon in 1982 and Mt Pinatubo in 1991 are clearly identified in the stratosphere. These volcanic eruptions reduced the warming in the troposphere and strengthened the cooling in the stratosphere during the most recent 30?years.  相似文献   

12.
The atmospheric circulation and thermal conditions in the troposphere were analysed to identify the situations which are conductive to hail development in the North German Lowlands. They were established on the basis of the data obtained from the US National Center for Environmental Prediction/US National Center for Atmospheric Research Reanalysis database, and they included sea level pressure, 500 hPa geopotential height, the temperature at 850 and 500 hPa and HYSPLIT backward trajectories model. Daily information about hail occurrence in 16 selected stations was received from Deutscher Wetterdienst database and it covered the years 1951–2010. It was found that hail in the studied area was connected with large negative anomalies of the sea level pressure over Scandinavia and, consequently, the northwestern direction of air mass influx. In some cases, hail was associated with the northern influx, with strong negative anomalies of the temperature, and with positive anomalies of the temperature during the southern influx of air masses.  相似文献   

13.
Recent studies have estimated the magnitude of climate feedback based on the correlation between time variations in outgoing radiation flux and sea surface temperature (SST). This study investigates the influence of the natural non-feedback variation (noise) of the flux occurring independently of SST on the determination of climate feedback. The observed global monthly radiation flux is used from the Clouds and the Earth's Radiant Energy System (CERES) for the period 2000–2008. In the observations, the time lag correlation of radiation and SST shows a distorted curve with low statistical significance for shortwave radiation while a significant maximum at zero lag for longwave radiation over the tropics. This observational feature is explained by simulations with an idealized energy balance model where we see that the non-feedback variation plays the most significant role in distorting the curve in the lagged correlation graph, thus obscuring the exact value of climate feedback. We also demonstrate that the climate feedback from the tropical longwave radiation in the CERES data is not significantly affected by the noise. We further estimate the standard deviation of radiative forcings (mainly from the noise) relative to that of the non-radiative forcings, i.e., the noise level from the observations and atmosphere–ocean coupled climate model simulations in the framework of the simple model. The estimated noise levels in both CERES (>13 %) and climate models (11–28 %) are found to be far above the critical level (~5 %) that begins to misrepresent climate feedback.  相似文献   

14.
Changes over the twentieth century in seasonal mean potential predictability (PP) of global precipitation, 200 hPa height and land surface temperature are examined by using 100-member ensemble. The ensemble simulations have been conducted by using an intermediate complexity atmospheric general circulation model of the International Center for Theoretical Physics, Italy. Using the Hadley Centre sea surface temperature (SST) dataset on a 1° grid, two 31 year periods of 1920–1950 and 1970–2000 are separated to distinguish the periods of low and high SST variability, respectively. The standard deviation values averaged for the (“Niño-3.4”; 5°S–5°N, 170°W–120°W) region are 0.71 and 1.15 °C, for the periods of low and high SST variability, respectively, with a percentage change of 62 % during December–January–February (DJF). The leading eigenvector and the associated principal component time series, also indicate that the amplitude of SST variations have positive trend since 1920s to recent years, particularly over the El Niño Southern Oscillation (ENSO) region. Our hypothesis states that the increase in SST variability has increased the PP for precipitation, 200 hPa height and land surface temperature during the DJF. The analysis of signal and noise shows that the signal-to-noise (S/N) ratio is much increased over most of the globe, particularly over the tropics and subtropics for DJF precipitation. This occurs because of a larger increase in the signal and at the same time a reduction in the noise, over most of the tropical areas. For 200 hPa height, the S/N ratio over the Pacific North American (PNA) region is increasing more than that for the other extratropical regions, because of a larger percentage increase in the signal and only a small increase in noise. It is also found that the increase in seasonal mean transient signal over the PNA region is 50 %, while increase in the noise is only 12 %, during the high SST variability period, which indicates that the increase in signal is more than the noise. For DJF land surface temperature, the perfect model notion is utilized to confirm the changes in PP during the low and high SST variability periods. The correlation between the perfect model and the other members clearly reveal that the seasonal mean PP changed. In particular, the PP for the 31 years period of 1970–2000 is higher than that for the 31 years period of 1920–1950. The land surface temperature PP is increased in northern and southern Africa, central Europe, southern South America, eastern United States and over Canada. The increase of the signal and hence the seasonal mean PP is coincides with an increase in tropical Pacific SST variability, particularly in the ENSO region.  相似文献   

15.
A diagnostic study is made on the diurnal variation in the occurrence frequency of the Tibetan Plateau vortices (TPVs) in four local time (LT) periods of a day (06–12 LT, 12–18 LT, 18–00 LT, 00–06 LT) using the data from May to September in 2006–2008. The occurrence frequency of the TPVs shows a robust diurnal variation with its maximum from evening to midnight (18–00 LT) and minimum from early morning to noon (06–12 LT). The physical processes in association with the diurnal variation of the TPVs are revealed. Both large-scale circulations and condensational latent heat induced by the precipitation system have important effect on the diurnal variation of the TPVs’ occurrence. In the evening at 18 LT, there are strongest convergence at 500 hPa and divergence at 200 hPa. Meanwhile, the largest water vapor is transported to the main body of the Tibetan Plateau, and the stratification is unstable, which are conducive to the strongest convection and condensational latent heat release accompanied with the largest precipitation system. All these conditions are responsible for the maximum occurrence of the TPVs in 18–00 LT. On the contrary, at 06 LT the weakest convergence at 500 hPa and divergence at 200 hPa as well as the stable stratification result in little latent heat release, and the minimum occurrence of the TPVs is observed in 06–12 LT.  相似文献   

16.
We present here in situ measurements obtained between 1991 and 2011 in outer-vortex conditions by the ELHYSA balloon-borne frost-point hygrometer. The frost-point hygrometer profiles are used for comparisons with the satellite data from version 19 (v19) and version 3.3 (v3.3) of the HALogen Occultation Experiment (HALOE) and the Microwave Limb Sounder (MLS) respectively. Potential Vorticity mapping is applied to all data sets to remove contributions of transient tropical intrusions and polar vortex air masses and hence ensure consistent comparisons between the balloon and satellite observations. Our selected balloon in situ observations are too sparse to directly infer mid-latitude stratospheric time series for continuous comparisons with HALOE and MLS records or derive water vapour trends but can be used to validate the satellite data. A mean difference of ?0.83?±?1.58 % (?0.04?±?0.07 ppmv) is obtained between HALOE v19 data and the balloon frost-point observations (with respect to HALOE) over the 30–80 hPa altitude range. The hygrometer-HALOE differences appear time-dependent as already presented in the literature. The mean difference reaches 2.80?±?0.96 % (0.13?±?0.04 ppmv) for MLS v3.3, with MLS systematically wetter than the balloon data reflecting a systematic bias between both datasets. We use our balloon data as reference to provide some information about the HALOE-MLS difference. From post-2000 ELHYSA-HALOE and ELHYSA-MLS comparisons, we find a HALOE-MLS difference matching the expected bias, with MLS v3.3 6.60?±?2.80 % (0.27?±?0.11 ppmv) wetter than HALOE v19. From the results obtained from our balloon-satellite data comparisons, we finally discuss the issue about merging the HALOE and MLS data sets to provide stratospheric water vapour trends.  相似文献   

17.
To carry out this research, interpolated data of daily rainfall from Iran’s Asfazari data base during 1/1/1979–31/12/2013 is used. The day along with pervasive rainfall considered a day that at least 50% of Iran’s territory has received more than 1 mm for at least two consecutive days. Based on mentioned thresholds, 224 days selected for statistical analysis. The sea level pressure data, zonal and meridional wind components and specific humidity with spatial resolution of 0.25*0.25 Gaussian degree in spatial domain of 10 °N to 60 °N and 15 °E to 75 °E obtained from the European Center for Medium range Weather Forecasting (ECMWF) ERA-Interim for selected days. Then on the data matrix of sea level pressure, the cluster analysis by Ward linkage method done and 4 sea level pressure patterns with different configuration of synoptic systems were identified. The findings showed that in the sea level, the interaction between southern thermal low pressure systems (Arabia low pressure) with Europe and Siberia cold immigrant high pressure both by individual and integration and anticyclone circulation of Arab sea from the low level of 1000–500 hPa of troposphere have the most role on occurrence of durable and pervasive rainfall of Iran. The most Vertically Integrated Moisture Flux Convergence in the first layer of troposphere (1000–850 hPa) observed in low height regions, in the second layer of troposphere (775–700 hPa) on Zagros Mountains and in third layer of troposphere (600–500 hPa) is seen in mountains leeward of Iran. Also the results showed that the maximum rainfall cores has the most coordination with Vertically Integrated Moisture Flux Convergence (VIMFC) in the second layer of troposphere (775–700 hPa) on the Zagros heights in the southwest of Iran.  相似文献   

18.
The spatial and temporal variability of rainfall over Ethiopia during the summer (JJAS) season is studied using observations (both station and satellite based) and model simulation data. The simulation dataset is generated using the fourth version of the International Center for Theoretical Physics Regional Climate Model (RegCM4) for the period 1989–2005. Ethiopia is first divided into 12 homogeneous regions using criteria including rotated empirical orthogonal function (REOF), spatial correlation, seasonal cycles, and topographical features. Spatially averaged observed and simulated rainfall time series are then generated and analyzed for each region. Standardized rainfall anomalies of the observations and the simulated data are highly correlated over the northern, western, northeastern, central, and southwestern regions, while a weak correlation is found over the border regions of the country. The dominant modes of rainfall variability are identified using REOF, while time–frequency variations of different dominant modes are described by wavelet analysis. The first leading patterns of rainfall and upper wind (averaged between 100 and 300 hPa) are highly correlated and exhibit similar features between simulation and observations over the northern, western, southwestern, and eastern regions of Ethiopia. The second loading pattern of rainfall and the first loading pattern of low-level wind (averaged between 850 and 1,000 hPa) exhibit a dipole structure across the southwestern and northeastern regions of the country. The dominant signals in the first rotated principal component (RPC) of rainfall and upper level wind fields show a period of 4–5 and 2–3 years, while the dominant signals in the second RPC show a period of 2–3 years at a 0.05 significance level. The correlations of significant RPCs across gauge, gridded, and model rainfall fields with that of low and upper level winds show the presence of a significant relationship (correlation exceeding ~0.6). Overall, the RegCM4 shows a good performance in simulating the spatial and temporal variability of precipitation over Ethiopia.  相似文献   

19.
Thunderstorms prevailing over tropics and midlatitudes depict dissimilar features relating to the thermodynamic and dynamic aspects. The identification of the physical characteristics of the tropical and midlatitude thunderstorms is the main objective of the present study. The stations Kolkata (22.6°N, 88.4°E) and Denver (39.47°N, 104.32°W) are selected from the tropics and midlatitudes for the comparative analyses. The study reveals that the average storm relative helicity (SRH) and the lapse rate between 700 and 500 hPa level is much higher over Denver compared to Kolkata during thunderstorm days. The study further reveals that the surface to mid troposphere (upto 500 hPa) become drier (~2 times) over Denver than Kolkata prior to the occurrence of thunderstorms while the upper tropospheric (300–100 hPa) humidity remains comparable for both the locations.  相似文献   

20.
利用ERA-Interim资料,采用改进的变形欧拉平均方法对1979—2011年剩余环流季节内时空结构转换及其演变特征进行了分析。结果表明:(1)150 hPa附近4—8月剩余环流上升中心发生了整体向北移动的趋势,而9月至次年2月则表现为整体向南的移动,并且6—8月和9—11月的移动较为明显,分别向北和向南移动了3.168°和2.277°。(2)对流层内的剩余质量输送显著增强,但是热带环流上升区以及穿越对流层顶进入平流层的输送存在着减弱的趋势。(3)两半球高纬度100 hPa附近从最低平流层向下输送的质量通量以及热带对流层顶附近向上输送的质量通量在各季节年代际变化中基本都是减弱的,仅在6—8月和9—11月北半球向下质量通量出现了增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号