首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The finding that surface warming over the Arctic exceeds that over the rest of the world under global warming is a robust feature among general circulation models (GCMs). While various mechanisms have been proposed, quantifying their relative contributions is an important task in order to understand model behavior. Here we apply a recently proposed feedback analysis technique to an atmosphere–ocean GCM under two and four times CO2 concentrations which approximately lead to seasonally and annually sea ice-free climates. The contribution of feedbacks to Arctic temperature change is investigated. The surface warming in the Arctic is contributed by albedo, water vapour and large-scale condensation feedbacks and reduced by the evaporative cooling feedback. The surface warming contrast between the Arctic and the global averages (AA) is maintained by albedo and evaporative cooling feedbacks. The latter contributes to AA predominantly by cooling the low latitudes more than the Arctic. Latent heat transport into the Arctic increases and hence evaporative cooling plus large-scale condensation feedback contributes positively to AA. On the other hand, dry-static energy transport into the Arctic decreases and hence dynamical heating feedback contributes negatively to AA. An important contribution is thus made via changes in hydrological cycle and not via the ‘dry’ heat transport process. A larger response near the surface than aloft in the Arctic is maintained by the albedo, water vapour, and dynamical heating feedbacks, in which the albedo and water vapour feedbacks contribute through warming the surface more than aloft, and the dynamical heating feedback contributes by cooling aloft more than the surface. In our experiments, ocean and sea ice dynamics play a secondary role. It is shown that a different level of CO2 increase introduces a latitudinal and seasonal difference into the feedbacks.  相似文献   

2.
Amplified Arctic warming is one of the key features of climate change. It is evident in observations as well as in climate model simulations. Usually referred to as Arctic amplification, it is generally recognized that the surface albedo feedback governs the response. However, a number of feedback mechanisms play a role in AA, of which those related to the prevalent near-surface inversion have received relatively little attention. Here we investigate the role of the near-surface thermal inversion, which is caused by radiative surface cooling in autumn and winter, on Arctic warming. We employ idealized climate change experiments using the climate model EC-Earth together with ERA-Interim reanalysis data to show that boundary-layer mixing governs the efficiency by which the surface warming signal is ‘diluted’ to higher levels. Reduced vertical mixing, as in the stably stratified inversion layer in Arctic winter, thus amplifies surface warming. Modelling results suggest that both shortwave—through the (seasonal) interaction with the sea ice feedback—and longwave feedbacks are affected by boundary-layer mixing, both in the Arctic and globally, with the effect on the shortwave feedback dominating. The amplifying effect will decrease, however, with climate warming because the surface inversion becomes progressively weaker. We estimate that the reduced Arctic inversion has slowed down global warming by about 5% over the past 2 decades, and we anticipate that it will continue to do so with ongoing Arctic warming.  相似文献   

3.
Climate models project a positive Indian Ocean Dipole(p IOD)–like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model and applying an overriding technique to its ocean component(version 2 of the Parallel Ocean Program), this study investigates the similarities and differences of the formation mechanisms for the changes in the tropical Indian Ocean during the p IOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, wind–thermocline–SST feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases. Some differences are also found, including the fact that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the p IOD but by the anomalous upper-ocean stratification under global warming. These findings are further examined through an analysis of the mixed layer heat budget.  相似文献   

4.
Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.  相似文献   

5.
Probabilistic climate change projections using neural networks   总被引:5,自引:0,他引:5  
Anticipated future warming of the climate system increases the need for accurate climate projections. A central problem are the large uncertainties associated with these model projections, and that uncertainty estimates are often based on expert judgment rather than objective quantitative methods. Further, important climate model parameters are still given as poorly constrained ranges that are partly inconsistent with the observed warming during the industrial period. Here we present a neural network based climate model substitute that increases the efficiency of large climate model ensembles by at least an order of magnitude. Using the observed surface warming over the industrial period and estimates of global ocean heat uptake as constraints for the ensemble, this method estimates ranges for climate sensitivity and radiative forcing that are consistent with observations. In particular, negative values for the uncertain indirect aerosol forcing exceeding –1.2 Wm–2 can be excluded with high confidence. A parameterization to account for the uncertainty in the future carbon cycle is introduced, derived separately from a carbon cycle model. This allows us to quantify the effect of the feedback between oceanic and terrestrial carbon uptake and global warming on global temperature projections. Finally, probability density functions for the surface warming until year 2100 for two illustrative emission scenarios are calculated, taking into account uncertainties in the carbon cycle, radiative forcing, climate sensitivity, model parameters and the observed temperature records. We find that warming exceeds the surface warming range projected by IPCC for almost half of the ensemble members. Projection uncertainties are only consistent with IPCC if a model-derived upper limit of about 5 K is assumed for climate sensitivity.  相似文献   

6.
One of the robust features in the future projections made by the state-of-the-art climate models is that the highest warming rate occurs in the upper-troposphere especially in the tropics. It has been suggested that more warming in the upper-troposphere than the lower-troposphere should exert a dampening effect on the sea surface warming associated with the negative lapse rate feedback. This study, however, demonstrates that the tropical upper-tropospheric warming (UTW) tends to trap more moisture in the lower troposphere and weaken the surface wind speed, both contributing to reduce the upward surface latent heat flux so as to trigger the initial sea surface warming. We refer to this as a ‘top-down’ warming mechanism. The rise of tropospheric moisture together with the positive water vapor feedback enhance the downward longwave radiation to the surface and facilitate strengthening the initial sea surface warming. Meanwhile, the rise of sea surface temperature (SST) can feed back to intensify the initial UTW through the moist adiabatic adjustment, completing a positive UTW–SST warming feedback. The proposed ‘top-down’ warming mechanism and the associated positive UTW–SST warming feedback together affect the surface global warming rate and also have important implications for understanding the past and future changes of precipitation, clouds and atmospheric circulations.  相似文献   

7.
Global warming has become a controversial public policy issue in spite of broad scientific consensus that it is real and that human activity is a contributing factor. It is likely that public consensus is also needed to support policies that might counteract it. It is therefore important to understand how people form and update their beliefs about climate change. Using unique survey data on beliefs about the occurrence of the effects of global warming, I estimate how local temperature fluctuations influence what individuals believe about these effects. I find that some features of the updating process are consistent with rational updating. I also test explicitly for the presence of several heuristics known to affect belief formation and find strong evidence for representativeness, some evidence for availability, and no evidence for spreading activation. I find that very short-run temperature fluctuations (1 day–2 weeks) have no effect on beliefs about the occurrence of global warming, but that longer-run fluctuations (1 month–1 year) are significant predictors of beliefs. Only respondents with a conservative political ideology are affected by temperature abnormalities.  相似文献   

8.
Pristine mountain environments are more sensitive to climate change than other land surfaces. Climatic variations in mountainous terrain are still poorly understood. Previous studies revealed inconsistent findings on the elevational dependence of warming in the mountains. In this study, the trends and elevational dependence of air temperature in the Cariboo Mountains Region (CMR) of British Columbia are explored using a surface air temperature dataset with a spatial resolution of five arc minutes over the 1950–2010 period. A Mann-Kendall test is performed for evaluation of trends and their significance. In recent decades the CMR has been warming at a faster rate than regional and global warming. The minimum air temperature trend shows significant amplified warming at higher elevations. The snow–albedo feedback and changes in cloud cover over the CMR may possibly be the major physical mechanisms responsible for these trends. The implications of such changes on the endangered mountain caribou and water resources of the area are also discussed.  相似文献   

9.
由于全球变暖,极地地区的气候经历了明显的变暖放大.在本项研究中,我们根据CMIP6模式的三种变暖情景(SSP1-2,6,SSP2-4.5和SSP5-8.5)下,极地放大变化对各个反馈机制(包括普朗克,温度递减率,云,水蒸气,反照率反馈,CO2强迫,海洋热吸收和大气热传输)的响应进行了分析.结果表明,通过用“辐射核”方法量化不同反馈机制对地表温度的增温贡献,北极放大(AA)强于南极放大(ANA),由温度递减率反馈主导,其次是反照率和普朗克反馈.此外,海洋的热吸收导致冬季比夏季有更强的极地变暖.在冬季,温度递减率反馈主导了AA大于ANA.AA和ANA的模式间差异随着全球变暖的增强而减小.  相似文献   

10.
The response of El Niño and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO2 concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Niño-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO-like SST variability to global warming.  相似文献   

11.
In a changing climate, changes in rainfall variability and, in particular, extreme rainfall events are likely to be highly significant for environmentally vulnerable regions such as southern Africa. It is generally accepted that sea-surface temperatures play an important role in modulating rainfall variability, thus the majority work to date has focused on these mechanisms. However past research suggests that land surface processes are also critical for rainfall variability. In particular, work has suggested that the atmosphere-land surface feedback has been important for past abrupt climate changes, such as those which occurred over the Sahara during the mid-Holocene or, more recently, the prolonged Sahelian drought. Therefore the primary aim of this work is to undertake idealised experiments using both a regional and global climate model, to test the sensitivity of rainfall variability to land surface changes over a location where such abrupt climate changes are projected to occur in the future, namely southern Africa. In one experiment, the desert conditions currently observed over southwestern Africa were extended to cover the entire subcontinent. This is based on past research which suggests a remobilisation of sand dune activity and spatial extent under various scenarios of future anthropogenic global warming. In the second experiment, savanna conditions were imposed over all of southern Africa, representing an increase in vegetation for most areas except the equatorial regions. The results suggest that a decrease in rainfall occurs in the desert run, up to 27% of total rainfall in the regional model (relative to the control), due to a reduction in available moisture, less evaporation, less vertical uplift and therefore higher near surface pressure. This result is consistent across both the regional and global model experiments. Conversely an increase in rainfall occurs in the savanna run, because of an increase in available moisture giving an increase in latent heat and therefore surface temperature, increasing vertical uplift and lowering near surface pressure. These experiments, however, are only preliminary, and form the first stage of a wider study into how the atmosphere-land surface feedback influences rainfall extremes over southern Africa in the past (when surface i.e. vegetation conditions were very different) and in the future under various scenarios of future climate change. Future work will examine how other climate models simulate the atmosphere-land surface feedback, using more realistic vegetation types based on past and future surface conditions.  相似文献   

12.
Global warming and accompanying climate change may be caused by an increase in atmospheric greenhouse gasses generated by anthropogenic activities. In order to supply such a mechanism of global warming with a quantitative underpinning, we need to understand the multifaceted roles of the Earth's energy balance and material cycles. In this study, we propose a new one-dimensional simple Earth system model. The model consists of carbon and energy balance submodels with a north–south zonal structure. The two submodels are coupled by interactive feedback processes such as CO2 fertilization of net primary production (NPP) and temperature dependencies of NPP, soil respiration, and ocean surface chemistry. The most important characteristics of the model are not only that the model requires a relatively short calculation time for carbon and energy simulation compared with a General Circulation Model (GCM) and an Earth system Model of Intermediate Complexity (EMIC), but also that the model can simulate average latitudinal variations. In order to analyze the response of the Earth system due to increasing greenhouse gasses, several simulations were conducted in one dimension from the years 1750 to 2000. Evaluating terrestrial and oceanic carbon uptake output of the model in the meridional direction through comparison with observations and satellite data, we analyzed the time variation patterns of air temperature in low- and middle-latitude belts. The model successfully reproduced the temporal variation in each latitude belt and the latitudinal distribution pattern of carbon uptake. Therefore, this model could more accurately demonstrate a difference in the latitudinal response of air temperature than existing models. As a result of the model evaluations, we concluded that this new one-dimensional simple Earth system model is a good tool for conducting global warming simulations. From future projections using various emission scenarios, we showed that the spatial distribution of terrestrial carbon uptake may vary greatly, not only among models used for climate change simulations, but also amongst emission scenarios.  相似文献   

13.
Wang  Yuwei  Huang  Yi 《Climate Dynamics》2020,55(9-10):2343-2350

Whether the stratospheric radiative feedback amplifies the global warming remains under debate. The stratospheric water vapor (SWV), one of the primary feedbacks in the stratosphere, is argued to be an important contributor to the global warming. On the other hand, the overall stratospheric feedback, which consists of both the SWV feedback and the stratospheric temperature (ST) feedback, does not amount to a significant value. The key to reconciling these seemingly contradictory arguments is to understand the ST change. Here, we develop a method to decompose the ST change and to quantify the decomposed feedbacks. We find that the SWV feedback, which consists of a 0.04 W m−2 K−1 direct impact on the top-of-the-atmosphere radiation and 0.11 W m−2 K−1 indirect impact via ST cooling, is offset by a negative ST feedback of − 0.13 W m−2 K−1 that is radiatively driven by the tropospheric warming. This compensation results in an insignificant overall stratospheric feedback.

  相似文献   

14.
大气水汽变化的反馈作用是影响平衡气候系统敏感性的最大反馈作用之一,能够放大其他温室气体增暖的效应,并可能导致极端天气气候事件的发生趋多趋强。因此,全面分析大气水汽的时空分布特征及其长期变化趋势,评估大气水汽反馈的区域气候效应,对于我们深入认识和理解全球变暖背景下区域气候响应的机理具有重要意义。综合国内外最新研究,已基本能够确定水汽反馈效应为一种使得全球增暖加快近一倍的强烈正反馈,并已能够估计其大致变化范围,但是此估计仍存在较大不确定性。随着卫星和探空技术的发展,目前已有的长期水汽资料日趋丰富,但资料之间也存在一些不确定性问题,同时单个资料本身也存在非均一性问题。最新的气候系统模式已能够大致模拟大气水汽的反馈效应,但近年的进展速度却并不令人乐观。我国的水汽观测和水汽反馈效应的研究也已取得长足进步,可以基本确定为水汽变化与地面温度存在正反馈关系,而与降水的关系虽然也较为密切,但因区域气候变化仍存在较大的不一致性。  相似文献   

15.
In this paper we study the impact of alternative metrics on short- and long-term multi-gas emission reduction strategies and the associated global and regional economic costs and emissions budgets. We compare global warming potentials with three different time horizons (20, 100, 500 years), global temperature change potential and global cost potentials with and without temperature overshoot. We find that the choice of metric has a relatively small impact on the CO2 budget compatible with the 2° target and therefore on global costs. However it substantially influences mid-term emission levels of CH4, which may either rise or decline in the next decades as compared to today’s levels. Though CO2 budgets are not affected much, we find changes in CO2 prices which substantially affect regional costs. Lower CO2 prices lead to more fossil fuel use and therefore higher resource prices on the global market. This increases profits of fossil-fuel exporters. Due to the different weights of non-CO2 emissions associated with different metrics, there are large differences in nominal CO2 equivalent budgets, which do not necessarily imply large differences in the budgets of the single gases. This may induce large shifts in emission permit trade, especially in regions where agriculture with its high associated CH4 emissions plays an important role. Furthermore it makes it important to determine CO2 equivalence budgets with respect to the chosen metric. Our results suggest that for limiting warming to 2 °C in 2100, the currently used GWP100 performs well in terms of global mitigation costs despite its conceptual simplicity.  相似文献   

16.
Although atmospheric greenhouse gas concentrations continuously increased, there was relatively little change in global-averaged surface temperatures from 1998 to 2013, which is known as atmospheric warming slowdown. For further understanding the mechanism involved, we explored the energy redistribution between the atmosphere and ocean in different latitudes and depths by using data analysis as well as simulations of a coupled atmosphere–ocean box model. The results revealed that, compared with observational changes of ocean heat content (OHC) associated with rapid warming, the OHC changes related to warming slowdown are relatively larger in multiple ocean basins, particularly in the deeper layer of the Atlantic. The coupled box model also showed that there is a larger increasing trend of OHC under the warming slowdown scenario than the rapid warming scenario. Particularly, during the warming slowdown period, the heat storage in the deeper ocean increases faster than the ocean heat uptake in the surface ocean. The simulations indicated that the warming patterns under the two scenarios are accompanied by distinct outgoing longwave radiation and atmospheric meridional heat transport, as well as other related processes, thus leading to different characteristics of ocean heat uptake. Due to the global energy balance, we suggest this slowdown has a tight relationship with the accelerated heat transport into the global ocean.  相似文献   

17.
We analyse Japanese newspaper coverage of global warming from January 1998 to July 2007 and how public opinion during parts of that period were influenced by newspaper coverage. We show that a dramatic increase in newspaper coverage of global warming from January 2007 correlated with an increase in public concern for the issue. Before January 2007, we find that coverage of global warming had an immediate but short-term influence on public concern. With such transitory high levels of media coverage we suggest that for more effective communication of climate change, strategies aimed at maintaining mass-media coverage of global warming are required.  相似文献   

18.
We developed a multi-trophic level ecosystem model by coupling physical, biogeochemical-plankton and fish models. An oceanic general circulation model was coupled with a lower trophic level ecosystem model and a Japanese sardine migration model, and applied to the western North Pacific. To investigate the impact of global warming on the pelagic fish ecosystem, such as Japanese sardine, we conducted numerical experiments of growth and migration of Japanese sardine using physical fields for the present day and future with a global warming scenario simulated by a high-resolution climate model. The model results demonstrated possible impacts of global warming on the growth and migration pattern of Japanese sardine. The growths of fish in the current main spawning region under the global warming scenario were significantly slower than those under the present climate scenario. Fish in this region will be at disadvantage for their recruitment under the global warming condition. Prey conditions in the spawning region were projected not to markedly change under global warming condition while water temperature increased. As a result sardine spawning ground was projected to shift towards more north areas. During the feeding migration period in summer, geographical distribution of juveniles fish was projected to shift northwards by one to two degrees latitude under the global warming condition following the change in the distribution of optimal temperature region for feeding. However, this northwards shift of the optimal temperature for feeding was minimized adjacent to the western North Pacific by the cooler water supply by the intensification of the Oyashio.  相似文献   

19.
Recent Rapid Regional Climate Warming on the Antarctic Peninsula   总被引:15,自引:1,他引:15  
The Intergovernmental Panel on Climate Change (IPCC) confirmed that mean global warming was 0.6 ± 0.2 °C during the 20th century and cited anthropogenic increases in greenhouse gases as the likely cause of temperature rise in the last 50 years. But this mean value conceals the substantial complexity of observed climate change, which is seasonally- and diurnally-biased, decadally-variable and geographically patchy. In particular, over the last 50 years three high-latitude areas have undergone recent rapid regional (RRR) warming, which was substantially more rapid than the global mean. However, each RRR warming occupies a different climatic regime and may have an entirely different underlying cause. We discuss the significance of RRR warming in one area, the Antarctic Peninsula. Here warming was much more rapid than in the rest of Antarctica where it was not significantly different to the global mean. We highlight climate proxies that appear to show that RRR warming on the Antarctic Peninsula is unprecedented over the last two millennia, and so unlikely to be a natural mode of variability. So while the station records do not indicate a ubiquitous polar amplification of global warming, the RRR warming on the Antarctic Peninsula might be a regional amplification of such warming. This, however, remains unproven since we cannot yet be sure what mechanism leads to such an amplification. We discuss several possible candidate mechanisms: changing oceanographic or changing atmospheric circulation, or a regional air-sea-ice feedback amplifying greenhouse warming. We can show that atmospheric warming and reduction in sea-ice duration coincide in a small area on the west of the Antarctic Peninsula, but here we cannot yet distinguish cause and effect. Thus for the present we cannot determine which process is the probable cause of RRR warming on the Antarctic Peninsula and until the mechanism initiating and sustaining the RRR warming is understood, and is convincingly reproduced in climate models, we lack a sound basis for predicting climate change in this region over the coming century.  相似文献   

20.
J. Fasullo 《Climate Dynamics》2012,39(5):1137-1147
A central paradox of the global monsoon record involves reported decreases in rainfall over land during an era in which the global hydrologic cycle is both expected and observed to intensify. It is within this context that this work develops a physical basis for both interpreting the observed record and anticipating changes in the monsoons in a warming climate while bolstering the concept of the global monsoon in the context of shared feedbacks. The global-land monsoon record across multiple reanalyses is first assessed. Trends that in other studies have been taken as real are shown to likely be spurious as a result of changes in the assimilated data streams both prior to and during the satellite era. Nonetheless, based on satellite estimates, robust increases in monsoon rainfall over ocean do exist and a physical basis for this land–ocean contrast remains lacking. To address the contrast’s causes, simulated trends are therefore assessed. While projections of total rainfall are inconsistent across models, the robust land–ocean contrast identified in observations is confirmed. A feedback mechanism is proposed rooted in the facts that land areas warm disproportionately relative to ocean, and onshore flow is the chief source of monsoonal moisture. Reductions in lower tropospheric relative humidity over land domains are therefore inevitable and these have direct consequences for the monsoonal convective environment including an increase in the lifting condensation level and a shift in the distribution of convection generally towards less frequent and potentially more intense events. The mechanism is interpreted as an important modulating influence on the “rich-get-richer” mechanism. Caveats for regional monsoons exist and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号