首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用常规气象观测资料、探空站资料、环保部门提供的AQI监测数据,对2015年1月26—27日温州地区重度霾天气过程进行了综合分析。结果表明:此次重度霾过程影响时间之长,影响之严重,在温州霾气象记录中是十分罕见的;高空3层西北气流控制,风速较小,静稳天气,地面冷空气扩散南下,将浙北方污染物推至浙南,重度霾天气是由北方污染物输入和本地污染物叠加,地面存在弱辐合,近地面又存在逆温层不利于水汽和污染物在垂直方向扩散,利于大气颗粒污染物在浙南温州地区堆积,使得霾污染天气稳定维持;此后,冷空气主体南下,风速加大,气象扩散条件转好,污染物扩散至海上或福建,霾渐消散。  相似文献   

2.
针对四川盆地大气污染防治工作的需要,应用2016年12月26日至2017年1月11日川南城市群(宜宾、自贡、泸州、内江、乐山)大气污染物浓度观测数据和气象数据,采用数理统计和污染天气诊断分析等方法,分析了这次川南城市群跨年度空气重污染过程的污染变化特征及其气象成因。结果表明:南支槽加强并引导其槽前西南干暖气流北上,致使当地低层大气增温,形成低空等温或逆温层,限制当地大气污染物扩散,是助长此重污染过程形成的主要天气系统。川南城市群低空的风向辐合,以及高相对湿度(未形成降水)所产生的吸湿增长效应,与低空等温或逆温配合,促使此次污染物浓度达到峰值(AQI为286)。南支槽减弱,随之原有等温或逆温层被破坏,逐渐减弱消失,低层风向辐合消失,川南城市群上空三维大气扩散能力增强,大气污染物浓度降低,最后降水的湿清除作用使当地污染物浓度快速降低,污染过程结束。本研究发现了有别于四川盆地西北部大气重污染的天气系统和相应气象成因,为深入认识川南城市群大气重污染气象成因及其防控提供了新的重要参考依据。  相似文献   

3.
2015年1月22—26日湖州地区出现了一次严重的持续性雾霾天气过程,严重影响了该地区人们的生活健康。借助空气质量AQI数据、地面气象要素、探空站资料及卫星遥感数据分析了本次重污染过程的污染特征及其成因。结果表明:在弱高压控制下,地面风速较小,天气条件静稳,不利于污染物扩散,容易造成持续性重污染;中低层形成的逆温结构,使得这次雾霾天气过程能够维持;来自北方的污染物输入使本地空气质量状况更加恶劣,同时卫星遥感数据显示此次污染为区域性污染;大气混合层高度的变化对雾霾的发展变化有较好的指示作用,当混合层高度较低时,污染物在低层容易积聚,更容易造成较强的污染,可为雾霾的预报提供参考依据。  相似文献   

4.
利用气象、环境、卫星遥感火点监测等资料,从环流形势、气象要素、污染物和污染传输特征等方面对哈尔滨2018年4月4日夜间至5日白天罕见重度霾天气成因进行分析。结果表明,此次重度霾天气首要污染物为PM2.5,污染最重时PM2.5浓度高达507μg?m-3,秸秆焚烧是污染物的主要来源,既有本地源又有外地源,利用HYSPLIT模型模拟出这次重度霾天气污染传输特征。重度霾时段,近地面风速小,为1.5m·s-1左右,最小为0.1m·s-1,风向呈弱气旋性辐合、湿度增大有利于形成霾。低层存在较强的贴地逆温,逆温层顶高度约为100m,逆温强度约为1.5℃/100m,不利于污染物在垂直方向上扩散。地面均压场和高空弱高压脊、暖锋锋区和暖平流为这次重度霾天气提供了有利的大气环流背景条件。  相似文献   

5.
张昊  付强  张莹莹 《吉林气象》2021,28(2):21-25
利用ERA-interim再分析资料、空气质量监测数据及常规气象观测数据,结合HYSPLIT后向轨迹模式对2019年3月18—20日延吉市出现的一次连续3d霾污染天气进行分析.结果表明:此次严重空气污染期间,低层受槽前西南暖湿气流影响,地面处于均压场控制下,低层950hPa存在明显逆温,利于污染天气的出现和发展.日最高气温较高,加速了大气光化学反应,利于细颗粒污染物的聚集.近地面平均风速大都在3m/s以下,大气污染物水平输送效率降低,导致大气污染物持续堆积.此次霾污染天气污染物主要通过外来污染源传输,污染物来源主要为华东沿海和辽宁地区,各高度气团整体受西南气流控制,经华东沿海、辽宁省,输送至延吉市.  相似文献   

6.
利用空气质量监测资料、高空和地面气象观测资料、NCEP再分析资料,对达州市2016年元旦节期间重污染天气过程特征及气象条件进行分析。结果表明:达州市此次重污染天气过程为长时间无冷空气活动,无降雨,大气污染物不断积聚形成。AQI日变化受污染源排放情况影响更大,早上低,白天逐渐增加,天黑后达到峰值。大气污染物的积累一般发生大气稳定度为中性或以上。AQI与08时和17时混合层厚度负相关,但日平均混合层厚度与AQI没有通过相关性检验。重污染时近地面有逆温层且逆温层较厚。AQI与逐日最高气温、日平均风速和日最大风速正相关,降雨对大气污染物稀释作用明显,特别是降雨持续时间长,雨量大效果更为显著。AQI逐时变化与温度正相关,与风速负相关。   相似文献   

7.
利用环境空气质量指数(AQI)、降水量及大气环流场资料对2013年贵阳市2次空气污染过程进行分析,从天气形势和空气污染演变角度分析气象因子在其中的作用。结果表明,2次污染过程中动力和热力气象因子均为其维持和发展提供有利条件,但存在异同。相同之处在于:2次污染过程中贵阳市均处在地面静止锋后,地面风速较小,不利于近地面空气污染物向区域外的水平输送;2次污染过程中贵阳上空均处在高空脊前的异常下沉气流区,配合对流层中低层的异常水平风速垂直梯度减小,均利于减小大气的斜压性、减弱天气尺度扰动的发展,同时异常逆温层的存在使大气近地层更加稳定,均不利于空气污染物的垂直混合、向高空扩散,加强了污染物在近地面集聚。不同之处在于:2次污染期间贵阳市上空分别存在不同程度的低层单层逆温和中、低层双层逆温,逆温增强时段与污染最重时段相对应,逆温层的存在大大增强了大气层结稳定度,为污染过程的维持和发展提供有利的气象条件;2次污染过程中风场的三维特征对演变过程中逆温层的影响各异,第1次过程中对流层中层偏南风利于将南方的暖湿气流输送到贵阳市上空,利于逆温层的增温、增湿和发展、维持,而第2次过程中高、低空一致的偏北风,在近地层易形成冷垫、抬升暖空气,加强逆温层的维持和发展。  相似文献   

8.
利用空气质量监测资料、高空和地面气象观测资料、NCEP再分析资料,对达州市2016年元旦节期间重污染天气过程特征及气象条件进行分析。结果表明:达州市此次重污染天气过程为长时间无冷空气活动,无降雨,大气污染物不断积聚形成。AQI日变化受污染源排放情况影响更大,早上低,白天逐渐增加,天黑后达到峰值。大气污染物的积累一般发生大气稳定度为中性或以上。AQI与08时和17时混合层厚度负相关,但日平均混合层厚度与AQI没有通过相关性检验。重污染时近地面有逆温层且逆温层较厚。AQI与逐日最高气温、日平均风速和日最大风速正相关,降雨对大气污染物稀释作用明显,特别是降雨持续时间长,雨量大效果更为显著。AQI逐时变化与温度正相关,与风速负相关。  相似文献   

9.
利用长株潭地区地面空气质量监测资料、常规地面气象资料及NCEP再分析资料和MODIS火点监测资料,结合HYSPLIT4后向轨迹模式,对2014年10月1718日长株潭地区一次严重霾天气过程的空气污染特征和成因进行综合分析。研究表明,长株潭地区此次严重霾天气污染事件的主要污染物为PM2.5,安徽南部和江西西北部地区秸秆焚烧产生的颗粒物,经高空偏东北气流引导输送到长株潭地区,是这次大范围烟霾天气的主要来源。长株潭地区西部高空槽区宽广,槽前西南气流较为强盛,地面受均压场控制,水平风速弱,为严重霾污染天气的维持提供了有利的环流条件。中低层逆温和大气底层湿度的增加,使污染物粒子不断累积;近地面连续静(小)风和风向的频繁转变,不利于污染物粒子的水平扩散;中下层弱的下沉气流、较低的混合层高度有利于污染物的垂直累积,为此次重度霾污染天气的发展、加强提供了有利的气象条件。  相似文献   

10.
利用常规气象观测资料、环境监测站点的空气污染物浓度监测资料、欧洲中心(ECMWF)提供的ERA-5逐时0.25°×0.25°再分析资料和NOAA研发的Hysplit后向轨迹模式,分析了 2020年3月29日-4月5日低纬高原的西双版纳地区持续性重度霾空气污染事件的特征、气象成因和污染物颗粒主要来源。结果表明:(1)重度霾污染期间,AQI值及PM2.5浓度值有显著日变化特征,表现为白天低、夜间高。(2)冷空气势力偏弱,脊前暖平流使中低层大气增温,有利于西双版纳地区大气层结的稳定,无明显水汽输送带,整个过程空气湿度较低,连续8天重度霾污染并未出现传统上高湿的气象霾特征。稳定的大气层结和逆温层的存在削弱了大气在垂直方向上的对流交换。(3)受均压场控制,地面和低空风速小,较低的混合层厚度和较小的通风系数等共同作用,使得污染物颗粒在水平和垂直方向上扩散受到抑制,导致污染物颗粒聚集。(4)各污染物浓度值与MODIS/Terra卫星反演东南亚境外火源点数有显著相关性,其中火源点个数与AQI正相关高达0.5。(5)由Hysplit后向轨迹模式表明此次重霾污染过程中颗粒物可能来源主要是缅甸马圭、曼德勒和东枝境外的输入型累积传输。西双版纳位于低纬高原地区,受地形影响,污染物积聚在景洪城区及周边澜沧江河谷地带之后,很难通过水平输送离开,这是也是造成此次连续重度霾污染事件的重要原因。  相似文献   

11.
2021年8月3日柳州市出现一次伴有短时强降水和下击暴流的强雷暴大风天气过程。利用观测资料以及柳州自动站分钟级数据、雷达、风廓线等资料,对此次过程中下击暴流的成因进行分析。结果表明:①此次过程是在大陆高压与热带辐合带间中低层为一致东北气流的背景下,弱垂直风切变与强不稳定能量、深厚干空气源、近地面的干绝热递减等有利环境条件下,由地面中尺度辐合线抬升触发的。②下击暴流初始回波具有脉冲风暴特征,之后发展成多单体风暴;下击暴流发生前有反射率核心下降,低层入流及中层径向辐合增强等特征,其垂直结构表现为低层辐散、中层辐合、中高层辐合旋转。③地面大风出现前风廓线雷达风场有明显高空动量下传和低层风速减小,大风出现在低层风速开始增强时刻,早于低层风速最强时。④下击暴流的产生与降水粒子的拖曳作用和负浮力有关;地形作用使得强对流回波沿地形运动,且下坡地形与峡谷效应对极端大风的形成有叠加作用。  相似文献   

12.
成都地区一次持续性污染过程天气特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
利用NCEP/NCAR再分析资料、地面气象观测资料,重点分析了2013年1月成都地区一次重污染天气过程的天气背景以及地面气象要素演变。结果表明:(1)此次持续的污染天气出现在高空为弱脊控制且位势高度场异常偏高,地面处于变性高压脊或均压场且近地面层风速较弱的静稳天气背景下。(2)产生此次高污染(高AQI)的地面气象条件为:地面冷高压逐渐变性,近地面温度升高,海平面气压降低,近地面相对湿度升高至80%左右,无降水或弱降水,能见度将降低至于10km以下,地面风速减弱。(3)中低层弱风速,弱的水平风垂直切变,700h Pa层附近和近地面层的逆温层,不利于污染物在垂直方向上的扩散,使得污染进一步加剧。   相似文献   

13.
2019年1月铜仁市发生了中到重度污染过程,本文利用铜仁市城区逐时环境监测资料,高空及地面气象观测资料,分析了本次污染过程气象条件特征。结果表明,此次首要污染物为细颗粒物(PM2.5)。污染天气发生时,铜仁上空是高压脊或一致的西南气流,地面为冷高压或均压区控制,气压梯度小,风小;当转为高空槽前,地面有冷空气补充,气压梯度增大时,污染物浓度得到降低。同时风速和相对湿度大小跟污染物浓度也有一定关系,地面风速小,空气干燥时,污染物浓度增加;相反,风速增大达4m/s以上,空气相对湿度增大达90%以上,特别是明显的雨雪天气发生时,污染物浓度得到快速降低。另外,污染天气伴随有近地层逆温层持续影响,逆温层厚度越厚,且逆温强度越强,抑制了大气垂直方向的湍流交换,有利于污染物浓度累积增长。受梵净山地形阻挡作用,当近地层为弱偏东风影响时,污染物不能翻越梵净山向西扩散,会在山的东侧堆积,导致铜仁城区污染物在本地循环累积,污染浓度维持较大值。上述研究结果,可为铜仁市空气质量预报及污染防控提供新的参考依据。  相似文献   

14.
孙艺  林倩 《气象科技》2020,48(2):292-298
2016年12月30日至2017年1月8日,山东出现了以PM2.5为首要污染物、持续几天、大部地区重度以上污染的霾天气。基于多种实况观测资料和ERA Interim再分析资料,分析了此次过程天气背景和边界层特征等。结果发现:高空平直纬向环流、地面弱气压场、典型的静稳天气,有利于霾维持较长时间。此次过程期间有3次冷空气影响,冷空气的强度影响霾的变化,弱冷空气难以破坏近地层逆温结构,并会从上游向下输送污染物,有利于污染物的累积;较强冷空气带来较强的垂直运动,破坏了静稳天气形势,有利于污染物的扩散及清除。此次过程稳定层结形势下,边界层高度是一个对霾有指示意义的物理量。边界层高度和AQI的变化呈滞后负相关关系,边界层高度降低之后对应AQI指数升高。逆温层长时间的存在是此次霾持续的重要条件,另外由于地理原因东南风增湿和逆温层顶高度降低都会导致污染物浓度增大,使霾加重。  相似文献   

15.
根据单站雾霾日数和区域雾霾过程的确定方法,挑选2014年12月16日至2015年1月27日四川盆地典型雾霾过程,结合空气质量指数(AQI)、污染物质量浓度、气象要素特征和大气环流背景,研究此次持续雾霾天气的产生、演变及转化特征。结果表明:(1)此次雾霾过程表现出强度强、持续时间长、发生范围广的显著特点。(2)AQI和污染物质量浓度的变化与雾霾天气过程高度一致,本次雾霾过程的主要污染物为PM_(2.5),其次是PM_(10)。(3)此次过程出现了不同强度的污染物积累、到达峰值及急速减弱阶段,雾霾天气过程的强弱与天气形势、边界层垂直结构密切相关,与历史同期相比,这次超长雾霾过程盆地平均气温偏高1.24℃,降水偏少34.77%,日照时数偏多10.33 h,相对湿度偏低2.67%,风速基本持平略偏大,稳定的大气环流形势为雾霾天气和严重污染提供了持续稳定的大气环境场;强逆温层结、边界层的下沉运动、地面弱风场中的辐合均使水汽和污染物存留在近地层不易向高空扩散,造成雾霾天气持续。  相似文献   

16.
田莉  李得勤  王扬锋  段云霞  刘硕 《气象》2020,46(6):837-849
利用环境监测站大气污染物数据、地面自动气象站观测资料、L波段加密探空资料和0.125°×0.125°的EC再分析资料,结合MODIS遥感火点监测和HYSPLIT4后向轨迹模拟结果,对比分析了2015年11月8日和2016年11月5日的两次由于东北地区秸秆焚烧导致辽宁重污染天气过程的大气边界层特征、气象扩散条件和大气污染物输送来源等。结果表明:两次过程地面PM_(2.5)浓度均出现快速上升和下降,其中2015年11月8日重污染过程的污染强度较2016年11月5日强,且持续时间更长。2015年11月8日重污染过程的混合层高度较低,其上层的中性层结转变为逆温层结,抑制混合层高度的发展。同时低层冷平流不断侵入到暖平流下方,使得大气层结稳定性增强,维持时间较2016年11月5日重污染过程更长,低层下沉运动和黑龙江西南部、吉林西部污染物的远距离输送增强使得辽宁地面污染物浓度快速累积。而2016年11月5日重污染天气过程主要受深厚冷空气影响,东北地区西部污染物的区域输送和地面风场辐合是地面污染物浓度快速上升的主要原因。  相似文献   

17.
利用常规观测资料、NCEP再分析资料、多普勒天气雷达资料及数值模拟结果,对2012年8月21日南昌市的一次大暴雨过程进行了数值模拟和诊断分析。结果表明,整层偏南暖湿气流为此次暴雨提供了充分的水汽和不稳定能量。地面冷空气的侵入,促使南昌上空中低层不稳定能量释放,是产生此次强对流过程的直接触发机制。影响南昌市的强雷暴回波有较明显的强回波低质心特征,降水效率较高,加之较长的持续时间,导致此次短时暴雨的重要原因。各物理量诊断分析表明,暴雨区强辐合上升运动,中低层大气强不稳定性层结使得上下层大气物质交换强烈,且低层辐合高层辐散造成的抽吸作用集中在一个纬度左右非常窄的地区,导致此次暴雨过程局地性强。暴雨区上空螺旋度分布呈"下正上负"的垂直结构,螺旋度正的大值区对应强降水中心。  相似文献   

18.
苏州市一次重霾污染天气过程的数值模拟   总被引:1,自引:1,他引:0  
本文对苏州地区2015年12月13—15日发生的一次典型的重霾污染天气过程进行了数值模拟,分析了颗粒物及其组分的时空变化特征及其气象影响因子,以期为该区域空气污染治理和预防提供科学依据。结果表明:(1)利用WRF-Chem模式对此次重霾污染天气过程的污染气体成分进行数值模拟后发现,小时平均的PM_(2.5)、PM_(10)、CO、SO_2、NO_2模拟值与实测值的相关系数较高,达到0.68以上,通过了P0.01的显著性检验,且日变化过程对应也较好。(2)通过分析此次污染过程的天气背景,发现污染形成期高空环流比较平直,中层为均匀的弱高压控制,地面受弱高压脊控制,这种形势容易导致颗粒物的堆积。后期地面等压线密集时,风速大,有利于污染物的输送与扩散。(3)通过分析此次污染过程期间气象要素的变化发现,有逆温、风速小、相对湿度大等不利的气象条件是导致此次污染过程发生的重要原因之一。(4)HYSPLIT轨迹分析显示,此次重霾过程主要受北方大范围灰霾颗粒物南下影响,北方污染气团逐步南推,14至15日本地大气扩散条件差、污染物累积,最终导致本地污染加重,从而发生重霾事件。(5)火点图的分布进一步验证了此次重霾污染过程是由外来污染气团输入所导致。  相似文献   

19.
利用6小时NCEP 0.25°×0.25°再分析资料、常规观测资料和多普勒雷达资料等,对2018年6月13日发生在河南省北部地区的一次风雹天气过程进行诊断分析,结果表明:(1)此次强风雹天气发生在华北冷涡后部西北气流中,强天气发生前大气整层较为干燥,冷涡后部横槽南下,自上而下带来干冷空气,低层水汽辐合与午后地面高温共同作用,形成上干冷下暖湿的不稳定层结;(2)地面辐合线和弱冷锋是此次风雹天气的触发机制;(3)对流单体在干侵入的一侧首先发展加强,随后在地面辐合线附近不断产生小的对流单体,对流单体合并后进一步加强,逐渐形成弓形回波带,大风出现在回波带前侧地面辐合线附近,冰雹出现在中气旋左侧区域;(4)对流单体的移动方向与地面辐合线一致,地面辐合线稳定少动有利于对流系统的增强,地面辐合线断裂后对流系统迅速减弱消亡。这些结论为强风雹短临预报预警提供了参考依据。  相似文献   

20.
梧州连续两天冰雹天气过程分析   总被引:1,自引:1,他引:0  
利用常规的地面、高空、有关物理量场和本站实测等资料,对2006年4月23日和24日梧州和苍梧先后出现的降雹天气进行分析,结果表明,此次局地性的强对流天气是由于中高层有干空气入侵到梧州上空,同时低层有暖湿气流输送,积聚不稳定能量,形成上干下湿的不稳定层结,分别在锋面进入地面气压槽和中尺度地面辐合线的触发下,出现的局部性短时冰雹、雷雨大风强对流天气.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号