首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-layer features with different prevailing wind directions for two distinct seasons (Southwest Monsoon and Northeast Monsoon) on the west coast of India are studied using data obtained from tower-based sensors at a site located about 500 m from the coast. Only daytime runs have been used for the present analysis. The surface boundary-layer fluxes have been estimated using the eddy correlation method. The surface roughnessz 0 obtained using the stability-corrected wind profiles (Paulson, 1970) has been found to be low for the Southwest monsson season. For the other season,z 0 is relatively high. The drag coefficientC D varies with height in the NE monsoon season but not in the season with lowz 0. This aspect is reflected in the wind profiles for the two seasons and is discussed in detail. The scaling behaviour of friction velocityu * and the turbulence intensity of longitudinal, lateral and vertical winds u, v and w, respectively) are further examined to study their dependence on fetch. Our study shows that for the non-dimensional case, u/u* and v/u* do not show any surface roughness dependence in either season. On the other hand, for w/u* for the season with lowz 0, the values are seen to agree well with that of Panofskyet al. (1977) for homogeneous terrain whereas for the other season with highz 0, the results seem to conform more to the values observed by Smedman and Högström (1983) for coastal terrain. The results are discussed in the light of observations by other investigators.  相似文献   

2.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

3.
A significant non-alignment between the mean horizontal wind vector and the stress vector was observed for turbulence measurements both above the water surface of a large lake, and over a land surface (soybean crop). Possible causes for this discrepancy such as flow distortion, averaging times and the procedure used for extracting the turbulent fluctuations (low-pass filtering and filter widths etc.), were dismissed after a detailed analysis. Minimum averaging times always less than 30 min were established by calculating ogives, and error bounds for the turbulent stresses were derived with three different approaches, based on integral time scales (first-crossing and lag-window estimates) and on a bootstrap technique. It was found that the mean absolute value of the angle between the mean wind and stress vectors is highly related to atmospheric stability, with the non-alignment increasing distinctively with increasing instability. Given a coordinate rotation that aligns the mean wind with the x direction, this behaviour can be explained by the growth of the relative error of the uw component with instability. As a result, under more unstable conditions the uw and the vw components become of the same order of magnitude, and the local stress vector gives the impression of being non-aligned with the mean wind vector. The relative error of the vw component is large enough to make it undistinguishable from zero throughout the range of stabilities. Therefore, the standard assumptions of Monin–Obukhov similarity theory hold: it is fair to assume that the vw stress component is actually zero, and that the non-alignment is a purely statistical effect. An analysis of the dimensionless budgets of the uw and the vw components confirms this interpretation, with both shear and buoyant production of uw decreasing with increasing instability. In the vw budget, shear production is zero by definition, while buoyancy displays very low-intensity fluctuations around zero. As local free convection is approached, the turbulence becomes effectively axisymetrical, and a practical limit seems to exist beyond which it is not possible to measure the u-w component accurately.  相似文献   

4.
Fluctuations of the horizontal wind under unstable conditions   总被引:1,自引:0,他引:1  
The similarity relations for u/u* proposed by Panofskyet al. (1977) and Højstrup (1982) have been verified using eddy-correlation data collected during the EFEDA-experiment, conducted over the extensive plain of La Mancha (Spain), where vine plants form a primary crop. Also, the standard Monin-Obukhov relation is considered. It is found that the expressions by Panofskyet al. and Højstrup both yield almost identical results, and are better than the Monin-Obukhov expression. Also, u measured with a cup anemometer obeys the similarity expressions well, provided that the effect of the variation of wind direction on propellor wind speed is accounted for. The relationship of Panofskyet al. works rather well even when the boundary-layer height scaleh is replaced by a fixed height,h c. Best results were obtained forh c=1800 m. This height scale is possibly associated with the horizontal variability in the surface sensible heat flux pattern.  相似文献   

5.
Soundings in the stably-stratified boundary layer were executed over the rough terrain of Northern Germany during a night with a low-level jet (LLJ) development. Vertical wind and temperature profiles were obtained at 5 m height intervals using a tethersonde transported up and down along a 300 m high radio tower by an elevator. From these profiles, turbulent fluxes of heat and momentum, coefficients of eddy diffusivity and boundary-layer parameters were estimated. The nocturnal mean state analysis agrees well with the second-order model results of Brost and Wyngaard (1978) and our own first-order numerical testing while the time histories of different profile groups are in accordance with the observations of Izumi and Barad (1963).  相似文献   

6.
For 390 ten-minute samples of turbulent flux, made with a trivane above a lake, the vertical alignment is determined within 0.1 ° through azimuth-dependent averaging. One degree of instrumental misalignment is found to produce an average tilt error of 9 ± 4% for momentum flux, and 4 ± 2% for heat flux. The tilt error in the vertical momentum flux depends mainly ons u/u*, and cannot be much diminished with impunity by high-pass pre-filtering of the turbulence signals. The effects of rain on trivane measurements of vertical velocity are shown to be negligible at high wind speeds, and adaptable to correction in any case.The normalized vertical velocity variance,s w/u*, appears to be proportional to the square root ofz/L for unstable stratification. For a wind speed range of 2 to 15 m s–1, the eddy correlation stresses measured at 4- and 8-m heights can be reasonably well estimated by using a constant drag coefficientC d=1.3 X 10-3, while cup anemometer profile measurements give an overestimate of eddy stress at high wind speeds. A good stress estimate is also obtained from the elevation variance; it is suggested that trivane measurement of this variance might be made from a mobile platform, e.g., a moderately stabilized spar buoy.  相似文献   

7.
In this study we examine the calibration of wind speed measured by a sonic anemometer, with an orthogonal probe configuration, with regard to the approximation of the flow angle, and the wind-speed dependence of the flow attenuation attributed to the transducer shadow. The flow angle should be calculated by the iterative method when the attenuation is relatively high. For a probe manufactured by Kaijo Co. TR-61C, the wind-speed dependence of the transducer shadow effect is formulated from the results of the wind-tunnel experiment. Assuming the equation is applicable to field observations, significant errors possibly remain especially when the wind speed is low, and /or the angle between the flow vector and the sonic path is small, if the wind-speed dependence in measurement errors is neglected.  相似文献   

8.
For the 1968 Kansas atmospheric surface-layer experiment, a supplementary analysis is made of the evaluation procedure. Available data on the ratio of wind speeds measured on separate booms show a variation with wind direction which is too large for an open mast. Actually the Kansas mast appears to have carried a bulky array of apparatus at the sonic anemometer levels. It is shown that the air flow interference caused by this obstacle can be satisfactorily estimated by way of potential flow calculations. From these it follows that the sonic anemometer measurements probably have undervalued the free-flow eddy stress by 20% to 30%, which implies that the simultaneous drag plate measurements of stress were generally correct. Also the overestimation of the mean wind speed by the Kansas cup anemometer is found to have been 6% rather than 10%. Some Kansas evaluation results are amended accordingly. The von Kármán constant is found to be 0.41 rather than 0.35, and the near-adiabatic eddy diffusivity ratio K H /K M becomes 1.0 rather than 1.3. The flux-gradient relations (Businger et al., 1971) after similar revision no longer differ significantly from those obtained elsewhere.  相似文献   

9.
A three-component anemometer, developed and refined during the past ten years, measures the three orthogonal wind-speed components directly along the instrument's three axes,X, Y, Z. The basic sensor for each of the three components is a light-weight helicoid propeller driving a tiny precision tachometer generator, which develops a D.C. voltage linearly proportional to the rate of turning of the propeller and reversing in polarity when the direction of rotation reverses. Each propeller turns at a rate almost linearly proportional to the instantaneous wind speed and the cosine of the angle subtended by the wind with the axis of the propeller. Propeller sensors have a starting speed of about 0.2 m s?1; a distance constant of about 1 m; and may be used in winds up to 30 m s?1. Over 500 of these instruments are now in use at research stations throughout the world.  相似文献   

10.
Data collected in the surface layer in a northern suburban area of Nanjing from 15 November to 29 December 2007 were analyzed to examine the Monin-Obukhov similarity for describing the turbulent fluctu- ations of 3D winds under all stability conditions and to obtain the turbulence characteristics under different weather conditions. The results show that the dimensionless standard deviations of turbulent velocity com- ponents (σ u /u* , σ v /u* , σ w /u * ) and dimensionless turbulent kinetic energy (TKE) can be well described by "1/3" power law relationships under stable, neutral, and unstable conditions, with σ u /u * > σ v /u * > σ w /u* . Land use and land cover changes mainly impact dimensionless standard deviations of horizontal component fluctuations, but they have very little on those of the vertical component. The dimensionless standard devi- ations of wind components and dimensionless TKE are remarkably affected by different weather conditions; the deviations of horizontal wind component and dimensionless TKE present fog day > clear sky > overcast > cloudy; the trend of the vertical wind component is the reverse. The surface drag coefficient at a Nan- jing suburban measurement site during the observation period was obviously higher than at other reported plains and plateau areas, and was approximately one order larger in magnitude than the reported plains areas. Dimensionless standard deviation of temperature declined with increasing |z /L| with an approximate "-1/3" slope in unstable stratification and "-2/3" slope in stable stratification.  相似文献   

11.
We examine the performance of two steady-state models, a numerical solution of the advection-diffusion equation and the Gaussian plume-model-based AERMOD (the American Meteorological Society/Environmental Protection Agency Regulatory Model), to predict dispersion for surface releases under low wind-speed conditions. A comparison of model estimates with observations from two tracer studies, the Prairie Grass experiment and the Idaho Falls experiment indicates that about 50% of the concentration estimates are within a factor of two of the observations, but the scatter is large: the 95% confidence interval of the ratio of the observed to estimated concentrations is about 4. The model based on the numerical solution of the diffusion equation in combination with the model of Eckman (1994, Atmos Environ 28:265–272) for horizontal spread performs better than AERMOD in explaining the observations. Accounting for meandering of the wind reduces some of the overestimation of concentrations at low wind speeds. The results deteriorate when routine one-level observations are used to construct model inputs. An empirical modification to the similarity estimate of the surface friction velocity reduces the underestimation at low wind speeds.  相似文献   

12.
Mean streamwise and vertical velocities as well as streamwise and vertical turbulence intensities were measured in a combustion wind tunnel used to collect pollutant emission data for agricultural field burning. Objectives were to compare the flow field upstream of a fire to that without a fire present and to compare the wind tunnel flow upstream of a fire to field conditions. Vertical centerline traverses with an anemometer were conducted for 32 separate wind tunnel operating configurations (wind speed, position in the tunnel, with or without fire, ceiling position, and floor condition) with one replication for each configuration (total of 64 traverses). Certain configurational changes in the wind tunnel had substantial effects on the flow field. Turbulence intensities and velocity profiles (as modeled by the log law-of-the-wall to determinez 0 andu * values) in the wind tunnel were comparable to those in the field as reported in the literature. Velocities and turbulence intensities were generally higher, however, with a fire present in the tunnel and all other conditions constant.  相似文献   

13.
A large-eddy simulation (LES) model, using the one-equation subgrid-scale (SGS) parametrization, was developed to study the flow and pollutant transport in and above urban street canyons. Three identical two-dimensional (2D) street canyons of unity aspect ratio, each consisting of a ground-level area source of constant pollutant concentration, are evenly aligned in a cross-flow in the streamwise direction x. The flow falls into the skimming flow regime. A larger computational domain is adopted to accurately resolve the turbulence above roof level and its influence on the flow characteristics in the street canyons. The LES calculated statistics of wind and pollutant transports agree well with other field, laboratory and modelling results available in the literature. The maximum wind velocity standard deviations σ i in the streamwise (σ u ), spanwise (σ v ) and vertical (σ w ) directions are located near the roof-level windward corners. Moreover, a second σ w peak is found at z ≈ 1.5h (h is the building height) over the street canyons. Normalizing σ i by the local friction velocity u *, it is found that σ u /u * ≈ 1.8, σ v /u * ≈ 1.3 and σ w /u * ≈ 1.25 exhibiting rather uniform values in the urban roughness sublayer. Quadrant analysis of the vertical momentum flux u′′w′′ shows that, while the inward and outward interactions are small, the sweeps and ejections dominate the momentum transport over the street canyons. In the x direction, the two-point correlations of velocity R v,x and R w,x drop to zero at a separation larger than h but R u,x (= 0.2) persists even at a separation of half the domain size. Partitioning the convective transfer coefficient Ω T of pollutant into its removal and re-entry components, an increasing pollutant re-entrainment from 26.3 to 43.3% in the x direction is revealed, suggesting the impact of background pollutant on the air quality in street canyons.  相似文献   

14.
Flow and turbulence above urban terrain is more complex than above rural terrain, due to the different momentum and heat transfer characteristics that are affected by the presence of buildings (e.g. pressure variations around buildings). The applicability of similarity theory (as developed over rural terrain) is tested using observations of flow from a sonic anemometer located at 190.3 m height in London, U.K. using about 6500 h of data. Turbulence statistics—dimensionless wind speed and temperature, standard deviations and correlation coefficients for momentum and heat transfer—were analysed in three ways. First, turbulence statistics were plotted as a function only of a local stability parameter z/Λ (where Λ is the local Obukhov length and z is the height above ground); the σ i /u * values (i = u, v, w) for neutral conditions are 2.3, 1.85 and 1.35 respectively, similar to canonical values. Second, analysis of urban mixed-layer formulations during daytime convective conditions over London was undertaken, showing that atmospheric turbulence at high altitude over large cities might not behave dissimilarly from that over rural terrain. Third, correlation coefficients for heat and momentum were analyzed with respect to local stability. The results give confidence in using the framework of local similarity for turbulence measured over London, and perhaps other cities. However, the following caveats for our data are worth noting: (i) the terrain is reasonably flat, (ii) building heights vary little over a large area, and (iii) the sensor height is above the mean roughness sublayer depth.  相似文献   

15.
It is suggested that convective scaling, with appropriate extensions, provides the most useful framework for estimating the effects of urban-scale surface inhomogeneities on diffusion in convective conditions. Strong contrasts in surface heat flux exist between cropland, forests, urban areas, and water or marshland surfaces. It is argued that a typical fetch for convective turbulence to readjust to changed heat (or buoyancy) input from the surface below is 2(U/w *)h, where U is the mean wind speed in the mixing layer, w * is the convective scaling velocity, and h is the mixing depth. In contrast, the fetch required for wind speed to readjust to new underlying surface roughness is of the order (U/u *)2h/2, where u * is the friction velocity.The ratio w */U is the best index of diffusion rates in moderately to very unstable conditions. General urban effects on heat flux, h, and U are discussed separately, then their combined effects on w */U are estimated. While this ratio can double over a large city during light winds, its increase is much less for small cities, or during moderate winds. Finally, some examples of heat flux in- homogeneities causing stationary convective features are presented. Steady downdrafts associated with these features are of the order of 0.4w *, and could significantly increase surface concentrations from elevated sources.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.This paper is based on a presentation made at the AMS Specialty Conference on Air Quality Modeling of the Urban Boundary Layer, in Baltimore, late 1983.  相似文献   

16.
Measurements of the temperature and zonal velocity fields which develop in a rotating annulus of fluid with an upper surface, differentially heated from the inner to outer cylinder, are described for the lower symmetric regime (small radial temperature differences). The temperature field is essentially conductive for moderate to large rotation rates, Ω (>1.0 sec−1). The zonal velocity field is poorly approximated by the thermal wind equation.Measurements of the transition to waves from the lower symmetric regime at very large rotation rates are presented for positive and negative radial temperature differences. They suggest that the centrifugal buoyancy force and the free surface curvature may be important factors for the lower symmetric-wave transition at large Ω. By varying the stratification of the fluid over a range of 103 independently of the radial temperature difference, ΔrwT, it is conclusively shown that several theories are correct in predicting that the lower symmetric transition is independent of the stratification at small ΔrwT > 0 for large enough Ω.  相似文献   

17.
The structure of atmospheric turbulence in the surface layer over the open ocean is examined under conditions of local free convection. The raw data consist of profile and fluctuation measurements of wind and temperature as obtained from a meteorological buoy. For near neutral conditions and for waves running approximately along the wind direction, wave-induced wind fluctuations can be described by a simplified linear theory based on Miles (1957). In this case, the spectrum of wind velocity is given as the sum of two parts; for the turbulent part, the parameterization as obtained by Kaimal et al. (1972) applies, while the wave-induced part is parameterized using a simplification of Miles' linear theory. For cases of local free convection, the measurements of the vertical component of the wind velocity are well described by similarity theory; as expected, w /(-uw)1/2 is proportional to (- z/L)1/3. In order to scale the longitudinal wind velocity component, it seems to be reasonable to extend the list of relevant parameters by the height of the mixed layer z i. We obtain u /(- uw)1/2 (z/z i)1/3(- z/L)1/3 with only a poor correlation coefficient of r = 0.6. Overall, the results of local free convection scaling obtained from direct measurements show good agreement with those obtained from profile measurements. A comparison between direct and indirect determination of turbulent fluxes of momentum shows an unexplained difference of about 20%. This discrepancy is mainly due to a gap in the uw-cospectrum at the swell frequency.  相似文献   

18.
The scintillation method tested over a dry vineyard area   总被引:8,自引:1,他引:8  
Measurements of a scintillometer device mounted at 4 m above a dry vineyard area in La Mancha, Spain, are used to obtain an average sensible heat flux densityH. Averaging is over a rectangular area determined by the distance between the scintillometer light source and receptor (875 m) and some upwind distance governed by the horizontal wind speed perpendicular to that line. Using similarity relations obtained from La Crau, a good correspondence betweenH measured with the scintillometer and an eddy-correlation device in the centre of a vineyard is obtained. The friction velocityu * was either measured directly using a sonic anemometer or obtained indirectly from two wind speeds and known values of the roughness length zo and displacementd. The free convection formulation underestimates the sensible heat flux by about 30%. This is due to a significant contribution of mechanically generated turbulence to the total turbulent transport, which was caused by relatively strong winds and rough terrain.  相似文献   

19.
Gust factors over open water and built-up country   总被引:1,自引:0,他引:1  
Data are presented of the gust factorG =u max/, both at 8-m height over a lake and up to 80-m height at the edge of a town. It is argued that, due to the presence of trends in long-period averages, the use of arithmetic or least-squareG-averages leads to overestimation of the dependence ofG on wind speedu, and medianG-values are preferable. A simple non-spectral model for gustiness at high wind speeds in the constant-stress layer is proposed and checked. The model relatesG to surface roughness and height above surface for gust wavelengths up to 200 m. The gust factor concept is shown to be inadequate for characterizing thunderstorm gustiness.  相似文献   

20.
湍流通量参数化方案的非迭代方法研究   总被引:3,自引:2,他引:1  
基于Högström (1996) 和Beljaars et al.(1991) 的研究工作, 沿用Louis et al.(1982) 和Launiainen (1995) 的思路, 本文采用多元回归分析方法, 研发了一种采用非迭代方法的湍流通量参数化方案。该方案直接用整体理查森数、 空气动力学粗糙度长度和热力学粗糙度长度对稳定度参数进行参数化, 从而避免了通过循环迭代计算Monin-Obukhov长度。该方案不仅有效地节省了CPU计算时间, 而且其计算结果与迭代方案 (BHH方案) 的计算结果非常接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号