首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 118 毫秒
1.
台风暴雨灾害是台风三类灾害(暴雨、大风、风暴潮)之首,而台风极端降水是暴雨灾害的直接原因,对台风极端降水的研究有利于增强对台风极端降水机理的认识和提高极端降水的预报水平。强台风“菲特”(1323)具有登陆强度历史罕见、降雨强度大、影响范围广、引发灾害重等特点,本文对“菲特”极端降水特征及其形成机理研究进行了回顾和总结。“菲特”的强降水过程主要分为两个阶段,造成了杭州湾一带和浙闽交界处两个强降水中心。“菲特”极端降水之所以产生,源于环境因子、地形和内部条件多尺度相互作用:环境因子涉及双台风作用、弱冷空气侵入、台风倒槽、垂直风切变和高空急流等,其中“丹娜丝”台风外围偏东气流源源不断的水汽输送是“菲特”极端降水形成的关键物理因子;山脉等地形增幅作用是浙江余姚等地出现历史性强降水的重要原因;水汽辐合和凝结与霰的融化和对流区雨滴的迁移是暴雨增幅重要的内部因素。  相似文献   

2.
利用地面区域自动站逐时降水观测资料,采用百分位方法,对2008—2017年5—9月鄂西南极端降水特征进行分析,利用卫星云图TBB和NCEP 0.5°×0.5°再分析场资料,对典型个例进行成因分析。结果表明:(1)鄂西南小时强降水和日降水量极端阈值范围差别较大,各站降水极端性程度没有可比性。小时强降水和大暴雨出现频率高的站点主要分布于有地形辐合和地形抬升的山脉四周,小时强降水多发生在00:00—03:00和16:00—19:00时段;(2)鄂西南极端降水发生最多的是东南部海拔高度相差大的鹤峰附近,低空急流和地形作用,使中尺度对流系统在东移过程中存在后向传播,导致降水持续时间长,累计雨量大;(3)对于不同时期的极端降水过程,其形成的热力、动力作用和垂直结构均不相同,6月的暖区极端降水,热力作用占主导,高层系统先于低层发展,而9月极端降水锋区明显,以动力作用为主,系统整层发展加强。  相似文献   

3.
近30 a江苏夏季降水日变化的气候学特征   总被引:2,自引:1,他引:1  
基于1980—2013年江苏省61站小时降水资料,分析了江苏省夏季降水日变化的特点及小时极端降水、不同级别雨日的日变化特征。结果表明,江苏省夏季降水日变化具有显著的双峰分布特征,然而江苏省北部和南部降水的主峰时段并不一致。从降水频次、累积降水量来看,江苏省北部降水以清晨至早上时段为主峰、午后至傍晚时段为次峰,南部降水与之相反。长持续性降水占夏季降水的2/3左右,且江苏北部占比多于南部,均为清晨至早上的单峰分布;短持续性降水占夏季降水的1/3,在江苏北部呈现出以午后至傍晚为主峰,清晨至早上为次峰的双峰分布,而在江苏南部呈现出以午后至傍晚的单峰分布特点。小时极端降水,阈值分布南低北高,虽然频次较少,但占夏季降水的40%左右。小时极端降水日变化的双峰分布和夏季总体降水分布类似,但主峰大都出现在午后至傍晚。不同级别雨日的日变化分布各有不同,但全省各区无显著差异。累积降水量贡献主要来自于暴雨和大雨。暴雨无论是从降水频次、累积降水量还是降水强度都呈现清晨至早上的单峰分布。  相似文献   

4.
利用2005—2018年125个国家级台站小时降水观测数据研究云南小时降水时空分布特征。结果表明:云南年总降水量、不同持续时间降水量、极端强降水量及降水日变化空间分布差异很大。年降水量自西北向南增加,雨强自北向南增强,降水时长西部大于东部、南部略大于北部,年降水量受降水时长和雨强共同影响,降水时长影响最强,雨强影响较弱,这种特征在滇西北最突出,但滇东北的降水量与雨强相关更好。云南大部夜雨量多于昼雨量,滇东北和北部边缘夜雨特征最显著;降水日变化特征在云南北部为夜间单峰,西部边缘为清晨单峰,中部为夜间与午后峰值相当的双峰,南部也为夜间和午后双峰,但南部不同区域间主峰和次峰出现时间不同。云南南部降水贡献以短、中历时降水为主,北部则以长、超长历时降水为主。云南短时强降水发生次数的空间分布表现为自西北向东南增加;年发生站次数具有增加趋势,日变化特征为显著单峰,多在傍晚至入夜出现,且极端短时强降水更易在凌晨出现。这些小时降水时空分布特征很大程度上代表了低纬高原地区的降水特征。由于低值天气系统多影响低纬高原中北部,热带天气系统多影响南部,且低纬高原地形复杂,局地热力条件差异明显,这些因素造成该区域小时降水时空分布特征差异显著。  相似文献   

5.
2017年5月7日,广州市增城区新塘镇等地出现了小时雨量超过180 mm、3 h雨量超过330 mm的极端强降水事件(简称“5·7”极端强降水事件),导致了严重的经济损失。这次过程的高强度降水分为两个主要阶段:花都区降水和增城区降水,每个阶段的强降水均集中在2~3 h内,最大分钟级降水达到了5 mm的强度,增城区新塘镇184.4 mm的极端小时雨量中约120 mm的雨量是在05:30—06:00的半小时内产生的。地闪监测显示,对流发展的第一阶段伴有较少的负地闪,第二阶段仅伴有几个闪电。雷达和卫星资料显示,强降水对流系统具有空间尺度小,发展迅速的特征;但发展成熟阶段的反射率因子大值区和卫星低TBB区在空间上出现明显偏离。强倾斜上升气流可能是造成反射率因子大值区和卫星低TBB区空间偏离的原因。雷达资料垂直剖面显示,对流具有回波顶高较低、云底高度低、强回波质心低等低质心暖云降水的特征。地势分布和辐射降温是花都北部低温中心的主要成因,大尺度弱冷空气和冷中心伴随的地形的共同作用,使得偏南暖湿气流向北移动受阻后,在花都地形的强迫抬升下触发了对流。偏南暖湿气流的持续输送、花都地形的阻挡和冷池的作用是01—03时对流维持的主要原因,弱冷空气的南下对03—04时对流系统的快速南移起到了重要作用,而冷池驱动的对流发展模型可以解释增城地区05—06时对流的较长时间维持。弱的环境引导气流和偏南暖湿气流使得高效的低质心、高效率强降水对流系统较长时间影响同一局地区域,从而导致了花都和增城两地局地极端强降水的出现。  相似文献   

6.
选取我国东南沿海热带气旋登陆数目多、经济发达的浙江和福建两省,利用国家级地面气象站逐小时降水观测资料,结合热带气旋降水客观分离方法,对1956~2012年(共57年)浙、闽两省沿海登陆热带气旋降水开展客观分离,统计分析热带气旋登陆期间降水精细化时空分布特征。结果表明:热带气旋平均路径在登陆前6小时至登陆后24小时呈西北行,累积降水具有明显非对称分布特征,与主要水汽辐合区相吻合,登陆后24小时至48小时的降水分布与鄱阳湖水体以及局地地形有密切联系;伴随登陆进程,降水分布呈现显著变化,登陆前,浙、闽两省降水较强;登陆后,降水范围向内陆扩展到浙、闽两省以外地区;登陆点聚类分析指出,所有类别的较强降水时段均位于登陆前12小时至登陆后6小时,但不同类别的降水分布和演变特征具有显著差异,这种差异与局地地形和热带气旋环流所处位置关系密切;小时强降水统计分析显示,伴随着登陆进程强降水频次分布逐渐变化和向内陆地区推进,高频次强降水主要出现在登陆前、后6小时的浙、闽两省沿海地区,且以两省交界附近地区最为集中,与该地区明显的高大地形分布有着密切的关系。两省各台站由登陆热带气旋带来的小时降水极值差异较大,从10到143 mm均有分布,大部分极值在30至60 mm之间。其中,极值大于50 mm的站点主要分布在沿海地区,在浙、闽交界处较为集中,与小时强降水的频次分布一致。  相似文献   

7.
周玉都  许敏  赵玮  刘艳杰  李娜 《气象科技》2021,49(6):885-896
利用2005—2019年河北省40个国家气象观测站逐小时降水资料,分析小时降水和小时强降水的时空分布特征,结果表明:①小时降水频率近年来是降低的,而小时强降水频次没有明显的变化趋势,小时降水量、降水频率、降水强度以及小时强降水频次的月变化均呈单峰型分布,小时强降水频次呈年差异化变大趋势,使得小时强降水事件发生的极端性更突出;②年降水量总体呈东高西低、南高北低的趋势,大值区主要位于东北和西南地区,降水频次和降水强度受地形影响较为明显,降水频次大值中心位于海拔较高的北部和中西部,平原频次较低,而降水强度大值区位于东北部,这是受副热带高压和地形作用共同影响造成的;③河北省降水主要集中在傍晚到夜间,降水峰值出现的时间有自西向东延后的特征,受午后局地对流天气的影响,最大峰值多出现在17:00前后,小时强降水发生频次较高;④小时强降水的高发时期是7—8月,主要集中在河北东部和南部,其最大值出现在东北部和石家庄一带;⑤南部降水量主要源于降水强度的贡献,北部、西部山区和西北部坝上地区降水量更主要的是受降水频率的影响;东北部降水量则是降水频率和降水强度的共同影响造成的。  相似文献   

8.
2008~2016年重庆地区降水时空分布特征   总被引:1,自引:0,他引:1  
利用2008~2016年国家气象信息中心提供的0.1°分辨率的中国地面与CMORPH融合逐小时降水产品,分析了重庆地区的降水时空分布特征,尤其是小时强降水的时空分布特征。结果表明:(1)年均降水量总体呈西低东高分布,大值中心位于重庆东北和东南部,且存在一定的季节性差异,特别是夏季,西部降水明显增强,总降水呈两高(西部、东部)一低(中部)的分布;降水频次、降水强度与地形的相关性较高,海拔高度较高的山区(海拔高度>1000 m)降水频次多大于盆地和丘陵区(海拔高度<1000 m),降水强度与之相反,且小时强降水多发生在迎风坡前侧的过渡区域,说明高海拔区域易出现降水,但降水强度不强,而地形抬升则是触发强降水的重要原因,导致山前降水明显大于山峰。(2)重庆地区降水主要集中在5~9月,降水量、降水强度和小时强降水频次均呈单峰型分布,峰值出现在6~7月,降水频次呈双峰型分布,一个峰值出现在5~6月,另一个峰值出现在10月,7~8月为低频期,与副高控制下的连晴高温天气有关。(3)重庆地区降水存在明显的日变化特征,降水以夜雨为主,且降水峰值出现时间表现为向东延迟的特征,重庆西部日峰值出现在凌晨02:00(北京时,下同),中部出现在清晨05:00,东北部出现在早上08:00。从不同季节来看,春季、秋季和冬季降水日变化呈单峰型分布,主要集中在清晨,而夏季受午后局地对流性天气的影响,在下午17:00左右存在一个次峰值。(4)强降水的主要集中在夏季,在空间上存在三个大值中心,受西南涡及地形的相互作用,夏季在缙云山以西的盆地区域,小时强降水频次明显较高。  相似文献   

9.
为研究梅雨期极端对流系统的微物理特征,利用2013—2014年江淮梅雨期间南京溧水S波段双偏振雷达探测资料和地面自动站小时降水资料,统计分析了两类极端对流降水系统的微物理特征及差异。这两类极端对流系统的定义基于地面降水强度和雷达回波顶高,分别为所有对流中降水强度最强的1%(R类:小时降水强度>46.2 mm/h)和对流发展高度最高的1%(H类:20 dBz回波顶高>14.5 km)。结果显示这两类极端对流系统仅有30%的样本重合,显示了二者之间的弱相关性。对于相同的反射率因子ZH,R类极端对流系统的近地面差分反射率因子ZDR通常较H类极端对流小约0.2 dB,表明R类极端对流具有较小的平均粒径。结合双偏振雷达反演的粒子大小和相态分布显示,虽然两类极端对流都表现出海洋性对流降水特征,但R类极端对流较H类极端对流的总体雨滴粒径更小而数浓度更高,导致R类极端对流系统的地面降水更强。与R类极端对流系统相比,H类极端对流系统的上升运动更强,将更多的水汽和过冷水输送到0℃层以上,有利于形成更大的冰相粒子(如霰粒子等),并通过融化形成大雨滴。以上研究表明,梅雨期降水强度和对流发展深度并没有必然的联系,极端降水主要是中等高度的对流引起。   相似文献   

10.
利用柳州市2010-2019年75个加密自动气象观测站小时降水资料,分析柳州市1h、3h、6h短时强降水时空分布特征。结果表明:短时强降水出现最多的是融安、融水一带以及鹿寨北部,山脉的迎风坡和喇叭口地形更利于短时强降水的出现;高发期在5、6月份,其次是7、8月份;短时强降水的日变化呈现单峰结构,主要出现在夜间和早晨时段。该区域短时强降水时空分布特征差异显著,与影响系统、地形的辐合抬升作用以及局地热力条件差异有关。  相似文献   

11.
赵玮  郝翠  曹洁  周璇  卢俐 《大气科学》2022,46(5):1167-1176
利用北京地区20个国家站1980~2020年的长期逐时降水资料,分析了北京夏季降水的基本气候特征和日变化时空分布特征。结果表明:(1)北京地区夏季40年平均降水量分布具有西北山区小,平原大,山区向平原过渡区的迎风坡最大的特点;降水频率则相反,平原降水频率整体小于山区;降水强度整体表现为西北弱,东部强,城区与南部居中的特点。北京夏季降水的强度和极端性较强,致灾风险高。(2)北京夏季平均降水量日变化主体呈单峰型,降水频次为双峰型,降水强度为多峰型,三者同时在22时(北京时,下同)达到最大,在12时最小。(3)降水的峰值时间随月份依次后推,6月最早,7月次之,8月最晚;峰值雨量7月最大,8月次之,6月最小。(4)降水量、降水频率和降水强度的日峰值空间分布具有较强的一致性,西北山区四站出现在20时以前,其余16站出现在20时及以后。使用K均值聚类算法将20站划分为两个区域,结果显示两个区域的降水量、降水频率和强度的日变化具有完全不同的分布特点。(5)近40年北京地区的降水结构在不断调整,短持续时间降水主导期和长持续时间降水主导期交替出现。2000年以前以小于6小时的短持续性降水为主,近15年大于6小时的长持续性降水明显增多。  相似文献   

12.
Added value of convection permitting seasonal simulations   总被引:2,自引:2,他引:0  
In this study the added value of a ensemble of convection permitting climate simulations (CPCSs) compared to coarser gridded simulations is investigated. The ensemble consists of three non hydrostatic regional climate models providing five simulations with ~10 and ~3 km (CPCS) horizontal grid spacing each. The simulated temperature, precipitation, relative humidity, and global radiation fields are evaluated within two seasons (JJA 2007 and DJF 2007–2008) in the eastern part of the European Alps. Spatial variability, diurnal cycles, temporal correlations, and distributions with focus on extreme events are analyzed and specific methods (FSS and SAL) are used for in-depth analysis of precipitation fields. The most important added value of CPCSs are found in the diurnal cycle improved timing of summer convective precipitation, the intensity of most extreme precipitation, and the size and shape of precipitation objects. These improvements are not caused by the higher resolved orography but by the explicit treatment of deep convection and the more realistic model dynamics. In contrary improvements in summer temperature fields can be fully attributed to the higher resolved orography. Generally, added value of CPCSs is predominantly found in summer, in complex terrain, on small spatial and temporal scales, and for high precipitation intensities.  相似文献   

13.
郭军  熊明明  黄鹤 《山东气象》2019,39(2):58-67
使用2007—2017年京津冀地区156个气象站暖季(5—9月)逐小时降水观测数据,根据地形将研究区域分为6个分区,分析各分区降水量季节内变化和日变化特征,结果表明:1)京津冀的多雨区主要位于沿燕山南麓到太行山,存在多个降雨中心。2)各分区降水量季节内特征总体表现为单峰型,即7月降水量最大,7月第3候至8月第4候是主汛期,8月降水量次之,5月最少。3)降水呈夜间多,白天少的特点,7月初之前的前汛期降水多发生在16—21时;主汛期降水呈双峰型,峰值在17—22时,次峰值出现在00—07时;8月中旬以后的后汛期多夜间降水,峰值多出现在00—08时。4)高原山区多短历时降水,长历时累计降水对季节降水贡献率大值区位于平原地区,而持续性降水贡献率大值位于太行山区和燕山迎风坡的西部。  相似文献   

14.
基于2013~2020年乐山地区9个国家自动站和136个区域自动站逐小时降水资料,应用诊断分析方法,系统研究了乐山地区短时强降水的时空分布及变化特征,探讨了短时强降水发生频次与地形因子的关系。结果表明:乐山地区短时强降水年均频次和极值均呈增加的趋势,强度较为稳定,变率不大。短时强降水在3~10月均有发生,其频次月分布呈现出单峰型的特征,集中发生在7~8月,占全年的77.7%,7月下旬~8月上旬发生频次又占7~8月总量的49.8%。短时强降水频次日变化呈单峰单谷结构,夜间发生概率最大,白天发生概率相对较小,22时~次日04时是短时强降水集中高发时段,虽然短时强降水在午后和傍晚的发生概率相对较小,但其强度较强,也应当引起重视。乐山地区短时强降水空间分布差异较大,存在两级分化的特点,与地形关系密切,总体呈西南部和东北部少、西北部—中部—东南部多的分布特征。短时强降水的发生与经纬度、海拔高度等地形因子显著相关,高发区主要集中在山谷喇叭口、岷江流域的河谷地带及城市热岛区。   相似文献   

15.
Mesoscale modeling study of severe convection over complex terrain   总被引:1,自引:0,他引:1  
Short squall lines that occurred over Lishui, southwestern Zhejiang Province, China, on 5 July 2012, were investigated using the WRF model based on 1°× 1° gridded NCEP Final Operational Global Analysis data. The results from the numerical simulations were particularly satisfactory in the simulated radar echo, which realistically reproduced the generation and development of the convective cells during the period of severe convection. The initiation of this severe convective case was mainly associated with the uplift effect of mesoscale mountains, topographic convergence, sufficient water vapor, and enhanced low-level southeasterly wind from the East China Sea. An obvious wind velocity gradient occurred between the Donggong Mountains and the southeast coastline, which easily enabled wind convergence on the windward slope of the Donggong Mountains; both strong mid–low-level southwesterly wind and low-level southeasterly wind enhanced vertical shear over the mountains to form instability; and a vertical coupling relation between the divergence on the upper-left side of the Donggong Mountains and the convergence on the lower-left side caused the convection to develop rapidly. The convergence centers of surface streams occurred over the mountain terrain and updrafts easily broke through the lifting condensation level(LCL) because of the strong wind convergence and topographic lift, which led to water vapor condensation above the LCL and the generation of the initial convective cloud. The centers of surface convergence continually created new convective cells that moved with the southwest wind and combined along the Donggong Mountains, eventually forming a short squall line that caused severe convective weather.  相似文献   

16.
利用地面加密自动站、常规观测资料、NCEP再分析资料和两种模式产品,对发生在宜昌峡谷地区2016年7月7日局地极端短时强降水过程和2018年4月22日稳定性极端降水过程形成原因及模式预报性能进行检验分析。结果表明:(1)强的块状回波稳定少动,造成7月7日高效率的对流降水。4月22日降水既有沿山中尺度对流回波造成的对流降水,也有螺旋状涡旋回波形成的锋面层状云降水。(2)山谷风形成中尺度切变线,触发对流,中尺度切变线发展为中尺度涡旋使对流加强是极端短时降水形成的主要原因。(3)地形强迫抬升使对流降水强度明显增大,锋面层状云回波受地形阻挡影响长时间维持是稳定性极端降水形成主要原因。(4)地形相差大的地区模式预报性能差异较大,模式对复杂地形下的对流降水预报偏弱,导致系统强度出现差异,进而影响降水强度预报。  相似文献   

17.
引入一维加权平均的谱分析方法定量研究四川地形强迫对该区域降水分布的影响。结果表明:纬向地形和冬季降水谱峰锁相于同一波长(475.8 km),呈共振关系,地形与其他季节降水呈漂移关系,这与经向和纬向上环流变动有关,即冬季纬向环流占主导,纬向地形触发的大气波动对冬季降水策动作用大;夏季降水是各种不同尺度系统相互作用的结果,地形是重要因素之一。经向和纬向地形特征尺度分别为296.8 km和475.8 km,反映了地形强迫的中尺度特征,且纬向地形谱峰比经向大1个数量级,纬向强迫更明显。夏季降水谱峰比冬季大2个数量级,降水系统纬向特征尺度比冬季小约150 km,说明夏季在纬向地形强迫下,降水系统尺度减小的同时其强度大大增加,这在一定程度上可以解释中尺度对流性降水在夏季偏多。四川夏季最大降水位于雅安地区,其地形扰动比四川整体扰动更明显,故产生的降水也更大。夏季降水和经向地形锁相于同一波长(37.1 km),经向地形对雅安夏季强降水起关键作用。  相似文献   

18.
利用常规观测资料、区域自动站资料、柳州多普勒雷达资料以及ERA5再分析资料对2020年6月24日(“6·24”过程)和7月9日(“7·9”过程)广西柳州元宝山地区先后出现的突发性局地大暴雨过程进行了分析, 探讨这两次过程的触发因子。结果表明: 在低层偏南暖湿气流持续输送的前提下, 元宝山脉动力抬升进一步增强了山脉附近垂直上升运动; 白天大量积聚的能量导致热力条件非常不稳定, 地面中尺度辐合线及局地地形形成的中尺度辐合中心和大尺度环流的配合致使对流系统先在元宝山脉南侧触发起来, “列车效应”以及高效率、低质心的降雨系统使得小时雨强和累积雨量极大; 两次过程与850 hPa西南气流风速脉动密切相关, 高温高湿的暖湿气流在元宝山地区强烈辐合为暴雨增幅提供了有利条件, 有利于强降水在柳州北部地区维持; “6·24”过程近地层有弱冷空气侵入, 低层水汽饱和、中高层有干冷空气卷入; “7·9”过程近地层没有冷空气侵入, 湿层深厚, 整层为高温高湿的环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号