首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
Characteristics of the spatiotemporal distributions of precipitation anomalies in the reaches of the Yangtze River and Huaihe River (YHR) were studied using EOF method. Four main precipitation pat-terns for the YHR in summer identified by the first two modes: a region-wide flood over the entire YHR (RWF); a region-wide drought over the entire YHR (RWD); a flood in the south with a drought in the northern region of the Yangtze River (FS-DN); and a drought in the south with a flood in the northern region of the Yangtze River (DS-FN). Based on the first two modes and the actual precipitation departure percentage, a new precipitation index is defined in this paper. The typical flood/drought years associated with the various rainfall patterns defined by this precipitation index are more representative and closer to reality compared to some existing precipitation indexes which just use the area-mean precipitation or the EOF time components individually. The characteristics of atmospheric circulation in summer corresponding to the four main precipitation patterns over the YHR in summer show the features of atmospheric circulation differ in different precipitation pattern years. Although the different patterns share a common main influential circulation system, such as the blocking high over northeastern Asia, the low trough of westerly flows in the mid latitudes, the West Pacific Subtropical High (WPSH), and the high ridge over the Tibet Plateau, the difference in location and intensity of these systems can lead to different distributions of precipitation anomalies.  相似文献   

2.
The relationship between the variation of precipitation in Guangdong Province is investigated using the correlation analysis and composite comparison methods in conjunction with precipitation data from 36 surface weather stations in the province and reanalyzed 850 hPa data from NCEP, U.S.A. A significant positive correlation is found between the variation of precipitation in summer there and the intensity of the southwesterly over the South China Sea though without being so inconclusive that a strong southwesterly over the sea is accompanied by more rain in Guangdong. For the front-associated flood season in April-June, the former is a carrier of rainwater for Guangdong but with insignificant linkage with the intensity of the southwest monsoon. There is even such a situation in which the precipitation gets stronger though with a weakened southwest monsoon from the tropics in May-June, which is mainly attributable to the increase of monsoon from the subtropics. For the typhoon-associated flood season in July-September, the Guangdong precipitation increases as the southwest monsoon strengthens over the central and northern South China Sea and the subtropical monsoon reduces its effects on the province.  相似文献   

3.
In this paper, an Atmosphere-Vegetation Interaction Model (AVIM) is coupled to the Regional Integrated Environment Model System (RIEMS), and a 10-year integration for China is performed using the RIEMS-AVIM. The analysis of the results of the 10-year integration shows that the characters of the spatial distributions of temperature and precipitation over China are well simulated. The patterns of simulated surface sensible and latent heat fluxes match well with the spatial climatological atlas: the values of winter surface sensible and latent heat fluxes are both lower than climatological values over the whole country. Summer surface sensible heat flux is higher than climatological values in western China and lower in eastern China, while summer surface latent heat flux is higher than climatological values in the eastern and lower in the western. Seasonal variations of simulated temperature and precipitation of RIMES-AVIM agree with those of the observed. Simulated temperature is lower than the observed in the Tibetan Plateau and Northwest China for the whole year, slightly lower in the remaining regions in winter, but consistent with the observed in summer. The simulated temperature of RIEMS-AVIM is higher in winter and lower in summer than that of RIEMS, which shows that the simulated temperature of RIEMS-AVIM is closer to the observed value. Simulated precipitation is excessive in the first half of the year, but consistent with the observed in the second half of the year. The simulated summer precipitation of RIEMS-AVIM has significant improvement compared to that of RIEMS, which is less and closer to the observed value. The interannual variations of temperature and precipitation are also fairly well simulated, with temperature simulation being superior to precipitation simulation. The interannual variation of simulated temperature is significantly correlated with the observed in Northeast China, the Transition Region, South China, and the Tibetan Plateau, but the correlation between precipitation simu  相似文献   

4.
Based on tropical cyclone datasets from Shanghai Typhoon Institute of China Meteorological Administration, the National Centers for Environmental Prediction (NCEP, USA) reanalysis data and the rainfall records from 743 stations in China, the impacts of cyclogenesis number over the South China Sea and the western Pacific are studied on the 30-60-day oscillations in the precipitation of Guangdong during the flooding period. The year with more-than-normal (less-than-normal) tropical cyclogenesis is defined as a ‘high year’ (‘low year’). In light of the irregular periodic oscillations, the method used to construct the composite life cycle is based on nine consecutive phases in each of the cycles. Phases 1, 3, 5, and 7 correspond to, respectively, the time when precipitation anomalies reach the minimum, a positive transition (negative-turning-to-positive) phase, the maximum, and a negative transition phase. The results showed that the precipitation of the 30-60-day oscillations is associated with the interaction between a well-organized eastward propagation system from the Arabian Sea/Bay of Bengal and a westward-propagating system (with cyclonic and anticyclonic anomalies in the northwest-southeast direction) from the South China Sea to western Pacific during the high years, whereas the precipitation is affected during a low year by the circulation over the South China Sea and western Pacific (with cyclonic and anticyclonic anomalies in the northeast-southwest direction). During the high year, the warm and wet air mass from the ocean to the west and south are transported to Guangdong by westerly anomalies and an enclosed latitudinal cell, which ascends in the Northern Hemisphere low latitudes and descends in the Southern Hemisphere low latitudes. During the low year, the warm and wet air mass from the ocean to the south is transported to Guangdong by southwesterly wind anomalies and local ascending movements. Because the kinetic energy, westerly, easterly shift, vertical velocity and vapor transportation averaged over (109–119° E, 10–20° N) is stronger in high years than those in low years, the precipitation of the 30-60-day oscillations in Guangdong is higher in high years than that in low years.  相似文献   

5.
Two land surface models, Community Land Model (CLM3.5) and NOAH model, have been coupled to the Weather Research and Forecasting (WRF) model and been used to simulate the precipitation, temperature, and circulation fields, respectively, over eastern China in a typical flood year (1998). The purpose of this study is to reveal the effects of land surface changes on regional climate modeling. Comparisons of simulated results and observation data indicate that changes in land surface processes have significant impact on spatial and temporal distribution of precipitation and temperature patterns in eastern China. Coupling of the CLM3.5 to the WRF model (experiment WRF-C) substantially improves the simulation results over eastern China relative to an older version of WRF coupled to the NOAH-LSM (experiment WRF-N). It is found that the simulation of the spatial pattern of summer precipitation in WRF-C is better than in WRF-N. WRF-C also significantly reduces the summer positive bias of surface air temperature, and its simulated surface air temperature matches more closely to observations than WRF-N does, which is associated with lower sensible heat fluxes and higher latent heat fluxes in WRF-C.  相似文献   

6.
In order to provide an operational reference for tropical cyclone precipitation forecast,this study investigates the spatial distributions of precipitation associated with landfalling tropical cyclones(TCs) affecting China using Geostationary Meteorological Satellite 5(GMS5)-TBB dataset.All named TCs formed over the western North Pacific that made direct landfall over China during the period 2001-2009 are included in this study.Based on the GMS5-TBB data,this paper reveals that in general there are four types of distribution of precipitation related to landfalling TCs affecting China.(a) the South-West Type in which there is a precipitation maximum to the southwestern quadrant of TC;(b) the Symmetrical South Type in which the rainfall is more pronounced to the south side of TC in the inner core while there is a symmetrical rainfall distribution in the outer band region;(c) the South Type,in which the rainfall maxima is more pronounced to the south of TC;and(d) the North Type,in which the rainfall maxima is more pronounced to the north of TC.Analyses of the relationship between precipitation distributions and intensity of landfalling TCs show that for intensifying TCs,both the maximum and the coverage area of the precipitation in TCs increase with the increase of TC intensity over northern Jiangsu province and southern Taiwan Strait,while decreasing over Beibu Gulf and the sea area of Changjiang River estuary.For all TCs,the center of the torrential rain in TC shifts toward the TC center as the intensity of TC increases.This finding is consistent with many previous studies.The possible influences of storm motion and vertical wind shear on the observed precipitation asymmetries are also examined.Results show that the environmental vertical wind shear is an important factor contributing to the large downshear rainfall asymmetry,especially when a TC makes landfall on the south and east China coasts.These results are also consistent with previous observational and numerical studies.  相似文献   

7.
Based on composite analysis and numerical simulations using a regional climate model (RegCM3), this paper analyzed the impact of the LHF anomaly in the tropical western Pacific on the precipitation over the south of China in June. The results are as follows. (1) Correlation analysis shows that the SC precipitation in June is negatively correlated with the LHF of the tropical western Pacific in May and June, especially in May. The SC precipitation in June appears to negatively correlate with low-level relative vorticity in the abnormal area of LHF in the tropical western Pacific. (2) The LHF anomaly in the tropical western Pacific is a vital factor affecting the flood and drought of SC in June. A conceptual model goes like this: When the LHF in the tropical western Pacific is abnormally increased (decreased), an anomalous cyclone (anticyclone) circulation is formed at the low-level troposphere to its northwest. As a result, an anomalous northeast (southwest) air flow affects the south of China, being disadvantageous (advantageous) to the transportation of water vapor to the region. Meanwhile, there is an anomalous anticyclone (cyclone) at the low-level troposphere and an anomalous cyclone (anticyclone) circulation at the high-level troposphere in the region, which is advantageous for downdraft (updraft) there. Therefore a virtual circulation forms updraft (downdraft) in the anomalous area of LHF and downdraft (updraft) in the south of China, which finally leads to the drought (flood) in the region.  相似文献   

8.
In this paper,the numerical experiments on the issue of spin-up time for seasonal-scale regional climate modeling were conducted with the newly Regional Climate Model (RegCM3),in the case of the abnormal climate event during the summer of 1998 in China.To test the effect of spin-up time on the regional climate simulation results for such abnormal climate event,a total of 11 experiments were performed with different spin-up time from 10 days to 6 months,respectively.The simulation results show that,for the meteorological variables in the atmosphere,the model would be running in"climate mode"after 4-8-day spin-up time,then, it is independent of the spin-up time basically,and the simulation errors are mainly caused by the model's failure in describing the atmospheric processes over the model domain.This verifies again that the regional climate modeling is indeed a lateral boundary condition problem as demonstrated by earlier research work. The simulated mean precipitation rate over each subregion is not sensitive to the spin-up time,but the precipitation scenario is somewhat different for the experiment with different spin-up time,which shows that there exists the uncertainty in the simulation to precipitation scenario,and such a uncertainty exhibits more over the areas where heavy rainfall happened.Generally,for monthly-scale precipitation simulation,a spin-up time of 1 month is enough,whereas a spin-up time of 2 months is better for seasonal-scale one. Furthermore,the relationship between the precipitation simulation error and the advancement/withdrawal of East Asian summer monsoon was analyzed.It is found that the variability of correlation coefficient for precipitation is more significant over the areas where the summer monsoon is predominant.Therefore,the model's capability in reproducing precipitation features is related to the heavy rainfall processes associated with the advancement/withdrawal of East Asian summer monsoon,which suggests that it is necessary to develop a more reliable parameterization scheme to capture the convective precipitation of heavy rainfall pro- cesses associated with the activities of East Asian summer monsoon,so as to improve the climate modeling over China.  相似文献   

9.
The characteristics and possible causes of changes in persistent precipitation(PP) and non-persistent precipitation(NPP) over South China during flood season are investigated using daily precipitation data from 63 stations in South China and NCEP/NCAR reanalysis data from 1961 to 2010. This investigation is performed using the Kendall's tau linear trend analysis, correlation analysis, abrupt climate change analysis, wavelet analysis, and composite analysis techniques. The results indicate that PP dominates total precipitation over South China throughout the year. The amounts of PP and NPP during flood season vary primarily on a 2–5-yr oscillation. This oscillation is more prominent during the early flood season(EFS; April–June). NPP has increased significantly over the past 50 years while PP has increased slightly during the whole flood season. These trends are mainly due to a significant increase in NPP during the EFS and a weak increase in PP during the late flood season(LFS; July–September). The contribution of EFS NPP to total flood season precipitation has increased significantly while the contribution of EFS PP has declined. The relative contributions of both types of precipitation during LFS have not changed significantly. The increase in EFS NPP over South China is likely related to the combined efects of a stronger supply of cold air from the north and a weaker supply of warm, moist air from the south. The increase in NPP amount may also be partially attributable to a reduction in the stability of the atmosphere over South China.  相似文献   

10.
This study investigates the impact of global warming on drought/flood patterns in China at the end of the 21st century based on the simulations of 22 global climate models and a regional climate model(RegCM3) under the SRES(Special Report on Emissions Scenarios) A1B scenario.The standardized precipitation index(SPI),which has well performance in monitoring the drought/flood characteristics(in terms of their intensity,duration,and spatial extent) in China,is used in this study.The projected results of 22 coupled models and the RegCM3 simulation are consistent.These models project a decrease in the frequency of droughts in most parts of northern China and a slight increase in the frequency in some parts of southern China.Considering China as a whole,the spatial extents of droughts are projected to be significantly reduced.In contrast,future flood events over most parts of China are projected to occur more frequently with stronger intensity and longer duration than those prevalent currently.Additionally,the spatial extents of flood events are projected to significantly increase.  相似文献   

11.
Recent destructive flood events and projected increases in flood risks as a result of climate change in many regions around the world demonstrate the importance of improving flood risk management. Flood-proofing of buildings is often advocated as an effective strategy for limiting damage caused by floods. However, few empirical studies have estimated the damage that can be avoided by implementing such flood damage mitigation measures. This study estimates potential damage savings and the cost-effectiveness of specific flood damage mitigation measures that were implemented by households during major flood events in France. For this purpose, data about flood damage experienced and household flood preparedness were collected using a survey of 885 French households in three flood-prone regions that face different flood hazards. Four main conclusions can be drawn from this study. First, using regression analysis results in improved estimates of the effectiveness of mitigation measures than methods used by earlier studies that compare mean damage suffered between households who have, and who have not, taken these measures. Second, this study has provided empirical insights showing that some mitigation measures can substantially reduce damage during floods. Third, the effectiveness of the mitigation measures is very regional dependent, which can be explained by the different characteristics of the flood hazard in our sample areas that experience either slow onset river flooding or more rapid flash and coastal flooding. Fourth, the cost-efficiency of the flood damage mitigation measures depends strongly on the flood probability faced by households.  相似文献   

12.
我国灾害性天气气候事件成因机理的研究进展   总被引:19,自引:4,他引:15  
全球变暖背景下,极端灾害事件增加的可能性不断增大,加强极端异常灾害事件成因机理的研究,对提高短期气候预测水平,增强我国防灾减灾能力有重要的理论意义和应用价值。我国主要气象灾害有:旱灾、洪涝(暴雨)、台风、高温酷暑、寒潮低温冷冻(雪灾、连阴雨、霜冻)、沙尘暴(大风)和风雹(冰雹、龙卷风)等。干旱和洪涝灾害分别占农作物总受灾面积的55%和27%,台风和冰雹占11%、其他占7%。本文对近年来有关干旱、洪涝(暴雨)、台风灾害成因机理方面的研究进展做初步小结。  相似文献   

13.
水文气象研究进展   总被引:5,自引:0,他引:5  
赵琳娜  包红军  田付友  梁莉  刘莹 《气象》2012,38(2):147-154
从面向流域的定量降水估测与预报、流域水文模型、水文气象耦合预报三个方面系统介绍水文气象研究进展。研究指出,融合天气雷达、卫星遥感及实况降水等多源信息是精细化定量降水估测产品的主要发展方向;采用多模式降水预报集成技术是提高定量降水预报精度的重要途径;分布式水文模型是流域水文模型的发展方向;引入定量降水预报的水文气象耦合预报模式可以延长洪水预报预见期,水文集合预报是水文预报方法的有效解决途径,而数值预报模式与水文模型的双向耦合模式是另一重要发展方向。  相似文献   

14.
春秋季环流的季节性调整对湖北省夏季洪涝的影响   总被引:2,自引:1,他引:2       下载免费PDF全文
洪涝是湖北省的主要气象灾害,文章在对湖北省汛期降水气候特征分析的基础上,定义出9个湖北持续性暴雨洪涝年,这些洪涝年主要发生在中国东部出现南方类或中间类雨型。通过对湖北省东部地区汛期降水与500 hPa高度场的相关分析,认为春秋季节的环流调整异常,是预测湖北省汛期降水的重要前期因子,典型洪涝年和干旱年前期3月份在55°~65°N的纬圈上,其高度距平合成显示,在130°E~120°W范围内和90°~10°W范围内距平变化相反。通过对上年春季3月、秋季10月及当年3月500 hPa高度场上环流季节性调整的分析,找出对湖北夏季降水异常偏多具有指示意义的指标,建立了湖北省夏季洪涝年的短期气候预测模型。模型首先用两个因子将大涝这种小概率事件(9/49=18%)转变为大概率事件(9/13=70%),然后,分两步进行判断。其模型对湖北大涝年(共9年,1954,1969,1980,1983,1987,1991,1996,1998,1999年)的识别率为100%,2000~2002年预报试验结论正确。  相似文献   

15.
Abstract

Floods are major natural disasters in Canada and worldwide. Although technology has reduced the flood hazard in many areas, the world death toll from floods in recent decades still has averaged 4680 per year. During the summer of 1993, flooding in the U.S.A. caused an estimated $12 billion damage. These statistics confirm that floods are a major natural disaster.

This paper reviews the hydrometeorological aspects of the hazard associated with rainstorm, urban, ice‐jam, and snowmelt floods. The hazard element is highest for floods with rapid onsets such as rainstorm, urban, and ice‐jam floods. Although snowmelt floods are common throughout Canada, their slower onset times reduce their risk potential.

To reduce the risk of the flood hazard, society must have access to statistical information for adequate planning and design, and forecasts for issuing warnings and implementing evacuation strategies. Flood design statistics and forecast models are discussed relative to each major flood type. The paper also describes historical flood frequency trends and discusses the implications of climatic warming for future floods. The paper concludes with a brief discussion of some knowledge gaps and research needs.  相似文献   

16.
2011年极端天气和气候事件及其他相关事件的概要回顾   总被引:1,自引:1,他引:0  
2011年世界各地极端天气事件频发。1月,朝鲜半岛经历1945年来最长的寒潮天气;同期,强暴风雪袭击美国,1亿人受影响;4月8日,持续干旱大风导致德国北部小镇遭遇沙尘暴;7~10月的季风强降水致使泰国遭遇自1942年以来最严重的洪灾;高温少雨致使东非地区、南美洲地区的古巴经历严重干旱;9月北极海冰的体积达历史最小。5~9月,我国平均高温日数为1961年以来历史同期次多,多地刷新高温历史极值;2011年我国平均年降水量创60年来最低,多地遭遇严重干旱;而华西和黄淮经历异常严重秋汛。  相似文献   

17.
彭窈  彭劲洪  何彬  毛文书  杨鑑斌 《广东气象》2022,44(1):30-33,37
基于1961-2016年逐年华南春季SPEI指数,采用滑动t检验、Morlet小波分析、EOF分解等方法,讨论华南春季旱涝时空变化特征.结果表明:(1)华南春季在20世纪60年代处于干旱期,70年代至90年代初处于雨涝期,90年代初至21世纪初出现大幅度旱涝转换,以后又进入干旱期.华南春季1983年以前呈现趋湿润化;在...  相似文献   

18.
利用日降水资料(08—08时)和常规天气图资料,以1981—2010年30 a平均降水量为气候态,统计2012年4—10月我国主要暴雨天气过程,概述各主要暴雨过程的重要影响系统、出现时段、范围及累积降水量。结果表明:2012年4—10月我国共出现190个暴雨日,34次主要暴雨过程,单站最大日降水量487mm,过程最大降水量631mm;4月华南、江南大暴雨过程比常年偏多,7月中下旬长江流域强降水频繁,长江三峡出现建库以来最大洪峰;汛期登陆我国的台风偏多且时间集中,北上台风偏多;汛期北方降水量比常年偏多,多个大中城市出现严重内涝。  相似文献   

19.
Floodplain restoration offers an opportunity to enhance communities’ resilience to flooding. However, the degree to which these interventions mitigate damages is often unknown, and identifying the best locations for implementation is a challenge. Further, the extent to which the benefits of flood mitigation are equitably distributed within communities is rarely considered in restoration projects. Here, we develop a novel framework to optimize investments in floodplain restoration that maximizes the utility of avoided damages from flood inundation for a range of budgetary constraints. We estimate the expected reduction in flood damages from restoration interventions by integrating a hydraulic flood model and an economic damage cost model. Using equity-weighted utility functions, we explicitly evaluate how the value of reduction in flood damages varies for different property owners. We demonstrate the potential of this approach in the Lewis Creek watershed, located in Vermont, USA. Under all optimal scenarios, the benefits of avoided flood damages over a 100-year time period outweigh the costs of restoration by at least 5-to-1. Floodplain restoration has the potential to reduce the present value of damages by up to $400,000, a 5% decrease from the baseline, at a cost of only $75,000. We also show that the equity-weighted utility of flood mitigation increase when restoration interventions protect the lowest-income property owners, particularly those who live in mobile homes. Together, our results illuminate the importance of evaluating the distribution of benefits and costs associated with alternative restoration strategies, as well as underscore the capacity for floodplain restoration to build resilience to flooding.  相似文献   

20.
东北地区汛期降水异常的大气环流特征分析   总被引:8,自引:1,他引:8  
贾小龙  王谦谦 《高原气象》2006,25(2):309-318
针对东北地区汛期(7~8月)的情况,分析了造成汛期降水异常的大气环流特征,结果表明:汛期多(少)雨年,低层850 hPa蒙古东南的气旋(反气旋)式距平环流、我国大陆东部的西南风(东北风)距平气流及日本南面的反气旋(气旋)式距平环流的共同作用加强(减弱)了低层西南暖湿气流在东北地区的辐合;多(少)雨年,中层500 hPa中高纬西风带经向运动加强(减弱),从贝加尔湖以北的高纬地区到日本附近的高度场呈 - (- -)的波列分布。8月的环流形势比7月更容易造成严重旱涝,下游鄂霍茨克海和日本海阻塞高压的发展和减弱是造成8月降水异常的重要因子。考虑7月旱涝流型演变时,应着重关注南北向 - 的“波列”;而考虑8月旱涝流型演变时,则更应着重关注东西向- - -的“波列”配置。多、少雨年,高、低层的散度场、垂直速度场及水汽条件等物理量场都有明显的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号