首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temporal characteristics of the Beijing urban heat island   总被引:4,自引:0,他引:4  
Summary This paper describes the inter-annual trend, and the seasonal and hourly variation of the near surface urban heat island (UHI) in Beijing. The surface air temperature data (mean, maximum, and minimum) from one urban (downtown Beijing) and one rural (70 km from downtown Beijing) station were used for the period 1977 and 2000. It is found that the temperatures in both urban and rural stations show an increasing tendency. Specifically, minimum temperature shows the greatest tendency at the urban station whereas maximum temperature shows the greatest increase at the rural station. The UHI intensity obtained by calculating the difference in temperatures between the two stations identifies that the intensity is greatest and has the greatest increasing trend for minimum temperature, while the UHI intensity of maximum temperature shows a slow decrease over time. UHI intensity for minimum temperature has a strong positive correlation with the increase in the urban population and the expansion of the yearly construction area. Seasonal analyses showed the UHI intensity is strongest in winter. This seasonal UHI variation tends to be negatively correlated with the seasonal variation of relative humidity and vapor pressure. Hourly variation reveals that the strongest UHI intensity is observed in the late nighttime or evening, while the weakest is observed during the day.  相似文献   

2.
北京"城市热岛"效应现状及特征   总被引:37,自引:16,他引:21  
利用2002年北京自动气象站资料,对北京“城市热岛”效应现状进行了分析。为了与20世纪70年代的结果相比较,选择城区代表站为天安门广场站,城郊代表站为朝阳气象站站。与20世纪70年代相比,目前北京的“城市热岛”表现出一些新特点:1)利用城区与城郊日均温差表示的“城市热岛”强度的统计结果表明,现在北京的“城市热岛”效应在夏季最强,秋、冬季次之,春季最弱,2)除夏季“城市热岛”整天存在(午后的平均强度在2℃左右)以外,其他季节的午后,天安门广场地区经常出现“城市冷岛”现象。3)北京“城市热岛”消失的极限风速没有发生系统性变化,当风速>3级时,北京“城市热岛”基本上消失。作者还研究了北京“城市热岛”形成和消失的日变化特征,以及“城市热岛”强度对风速等气象要素变化的响应特征。值得指出的是,对强“城市热岛”的个案分析显示,冬季夜晚“城市热岛”强度经常表现出较大的波动性,与此相伴随,城郊地面风出现风向突变和风速的阵性现象。  相似文献   

3.
利用拉萨、墨竹工卡、尼木建站以来的多年历史资料和近两年新建的区域自动站、8个城市热岛效应自动气象站资料分析拉萨城市热岛强度日、季、年变化,时空分布及其可能的影响因子。分析表明:拉萨城市热岛强度呈显著的逐年增强趋势,在1978~2011年间平均每10年增加0.24℃;多年热岛强度冬季最强(2.0℃),其次是春季(1.8℃)和秋季(1.7℃),夏季强度最小(1.6℃);拉萨城市高温中心主要在城市中心,气温分布沿着高值区向两侧呈递减状态,郊外的气温比城区平均低0.9℃左右,夜间热岛效应强度明显高于白天。随着城市化进程的不断增强,大量改变的下垫面状况,不断增多的城市建筑群,骤增的人类活动和能源消耗,导致城市热岛强度不断增强。   相似文献   

4.
利用1972-2011年阳泉市3个国家级气象站资料、2011年36个乡镇区域自动站气温资料,分析了阳泉市城市热岛效应的年际变化、季节变化、月变化和日变化特征。结果表明:阳泉市存在弱的城市热岛效应,1972-2011年平均热岛强度0.554 ℃。阳泉市城市热岛强度整体呈显著上升趋势,热岛强度的增加主要是由于夏季热岛强度的增强;热岛强度冬、秋季强,春、夏季弱;12月最强,5月最弱;热岛强度日变化表现为12时最小,从傍晚开始随降温逐渐增大,到早晨气温降到最低时最大,日出之后迅速减小;2008-2011年最强热岛强度出现在2010年1月14日08时,达7.9 ℃。阳泉在升温天气热岛强度变幅增大,易在早晨形成较强城市热岛,下午形成城市冷岛;降温天气热岛强度变幅减小;温度变化较小时则易维持弱的城市热岛。阳泉市主要城市发展因子与霾日数、气温呈显著正相关,在目前的经济发展水平条件下,阳泉市城市化发展可能使城市温度增高,城市绿地面积的增加可能对热岛效应有缓解作用。  相似文献   

5.
The statistical and dynamical characteristics of the urban heat island (UHI) intensity in Seoul are investigated for non-precipitation days and precipitation days using 4-year surface meteorological data with 1-h time intervals. Furthermore, the quantitative influence of synoptic pressure pattern on the UHI intensity is examined using a synoptic condition clustering method. The statistical analysis shows that the daily maximum UHI intensity in Seoul for non-precipitation days is strongest in autumn (4.8°C) and weakest in summer (3.5°C). The daily maximum UHI intensity is observed around midnight in all seasons except in winter when the maximum occurrence frequency is found around 08 LST. This implies that anthropogenic heating contributes to the UHI in the cold season. The occurrence frequency of the UHI intensity has a negatively skewed distribution for non-precipitation days but a positively skewed distribution for precipitation days. The amplitude of the heating/cooling rate and the difference in the heating/cooling rate between the urban and rural areas are smaller in all seasons for precipitation days than for non-precipitation days, resulting in weaker UHI intensities for precipitation days. The urban cool island occurs very often in the daytime, with an occurrence frequency being 77% of the total non-precipitation days in spring. The analysis of the impact of large-scale dynamical forcing shows that the daily maximum UHI intensity varies with synoptic pressure pattern, ranging from ?22% in spring to 28% in summer relative to the seasonal mean daily maximum UHI intensity. Comparison of the UHI intensity calculated using station-averaged temperatures to that based on the conventional two-station approach indicates that local effects on the UHI intensity are minimized by using multiple-station data. Accordingly, an estimation of the UHI intensity using station-averaged temperatures for both urban and rural areas is suggested.  相似文献   

6.
This work examines the characteristics of the urban heat island (UHI) in a medium-sized city in northern Spain (Bilbao) using 5-year climate data (2005–2009) and the results of three specific measurement campaigns (2009–2010). Urban climate variables are not only compared with those in rural sites but also local climatic differences occurring inside the city are analysed. The findings presented in this paper show the influence of complex topography and sea/land breeze in the urban climate. Spatial characteristics and temporal evolution of UHI is presented. Hourly maximum temperature anomaly (ΔT u–r, max) occurs just after sunrise and an urban cold island (UCI) is developed after midday. Along the year, mean UHI intensity is highest in autumn and the UCI effect increases in spring and summer in relation with sea breeze cooling potential. Diurnal and seasonal variation of air flow patterns appear to influence significantly on UHI intensity.  相似文献   

7.
城市热岛强度变化对安徽省气温序列的影响   总被引:1,自引:0,他引:1  
根据安徽省81个气象台站的资料研究了其气温序列特点,并选取了其中46个台站,划分为城市站、乡村站、国家基本/基准站等类别,对1966~2005年期间平均、最高、最低气温的年、季变化进行了分析比较.结果表明:两个时段各类型台站3项气温的增温率、热岛增温率、热岛增温贡献率均表现为城市站最大,国家基本/基准站次之,乡村站最小...  相似文献   

8.
With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961–2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen’s Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3–62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.  相似文献   

9.
This paper describes the statistical characteristics and temporal variability of the urban heat island (UHI) intensity in Buenos Aires using 32-year surface meteorological data with 1-h time intervals. Seasonal analyses show that the UHI intensity is strongest during summer months and an “inverse” effect is found frequently during the afternoon hours of the same season. During winter, the UHI effect is in the minimal. The interannual trend and the seasonal variation of the UHI for the main synoptic hours for a longer record of 48?years are studied and associated to changes in meteorological factors as low-level circulation and cloud amount. Despite the population growth, it was found a negative trend in the nocturnal UHI intensity that could be explained by a decline of near clear-sky conditions, a negative trend in the calm frequencies and an increase in wind speed. Urban to rural temperature differences and rural temperatures are negatively correlated for diurnal and nocturnal hours both for annual and seasonal scales. This result is due to the lower interannual variability of urban temperatures in comparison to rural ones.  相似文献   

10.
利用阳泉市3个国家级气象站资料分析了阳泉市城市热岛效应的年际变化、季节变化、月变化和日变化特征,结果表明:阳泉市存在弱的城市热岛效应,1972年-2011年平均热岛强度0.554℃。阳泉市热岛强度冬、秋季强,春、夏季弱;12月最强,5月最弱;阳泉市热岛强度整体呈显著上升趋势,热岛强度的增加主要是由于夏季热岛强度的增强。热岛强度日变化表现为12时最小,从傍晚开始随降温逐渐增大,到早晨气温降到最低时最大,日出之后迅速减小;2008年-2011年最强热岛强度出现在2010年1月14日08时达7.9℃。阳泉市主要城市发展因子与霾日数、气温呈显著正相关,在目前的经济发展水平条件下,城市化发展可能使阳泉城市温度增高,城市绿地面积的增加可能对热岛效应有缓解。  相似文献   

11.
Summary ?During recent years, numerous studies have examined the Buenos Aires urban climate, but the relationship between large-scale weather conditions and the Buenos Aires urban heat island (UHI) intensity has not been studied. The goal of this paper is to apply an objective synoptic climatological method to identify homogeneous air masses or weather types affecting Buenos Aires during winter, and to relate the results to the UHI intensity. A K-means clustering method was used to define six different air masses considering the 03:00, 09:00, 15:00 and 21:00 LT surface observations of dry bulb temperature, dew point, cloud cover, atmospheric pressure and wind direction and velocity at Ezeiza, the most rural meteorological station of the Buenos Aires metropolitan area (Fig. 1). Results show that the mean UHI intensity is at its maximum (2.8 °C) a few hours before sunrise when conditions are dominated by cold air masses associated with cold-core anticyclones, weak winds and low cloud cover. Inverse heat islands are found during the afternoon for all air masses indicating that surface processes are not dominant at that time. The relatively infrequent and warmest air mass is the only one that presents a mean negative urban-rural temperature difference (−0.1 °C) during the afternoon with the smallest diurnal cycle of the UHI intensity probably due to the prevailing high humidity and cloudy sky conditions. The paper provides an insight into the Buenos Aires urban–rural temperature difference under a variety of winter weather types and results could be useful to improve local daily temperature forecasts for the metropolitan area of Buenos Aires on the basis of the routine forecasts of weather types. Received October 24, 2001; revised June 12, 2002; accepted October 10, 2002  相似文献   

12.
采用2000~2011年6月MODIS地表温度产品和拉萨市4个气象站6月平均地表温度对拉萨市地表温度的时空变化进行了分析.结果表明:拉萨市在近12年内地表温度呈明显上升趋势,2009年地表温度达到最高为28.49℃,最小值出现在2003年为14.12℃.在空间分布上高温区主要集中在城市中心和城市周边区域,并随着时间推移不断向外扩张,在2007年6月拉萨市地表温度高温区分布范围最大,其中纳木错东部和林周县的高温区增加最显著;在利用实测的地表温度与MO-DIS反演的地表温度做相关分析发现,两者的相关系数为0.64通过了0.001的显著性检验,两种地表温度的时间变化趋势也较为一致,因此MODIS地表温度反演产品适用于大范围地表温度和城市热环境监测是可行的.  相似文献   

13.
Air temperature was monitored at 13 sites across the urban perimeter of a Brazilian midsize city in winter 2011. In this study, we show that the urban heat island (UHI) develops only at night and under certain weather conditions, and its intensity depends not only on the site's land cover but also on the meteorological setting. The urban heat island intensity was largest (6.6 °C) under lingering high-pressure conditions, milder (3.0 °C) under cold anticyclones and almost vanished (1.0 °C) during the passage of cold fronts. The cooling rates were calculated to monitor the growth and decay of the UHI over each specific synoptic setting. Over four contiguous days under the effect of a lingering high-pressure event, we observed that the onset of cooling was always at about 2 h before sunset. The reference site attained mean cooling rate of ?2.6 °C h?1 at sunset, whilst the maximum urban rate was ?1.2 °C h?1. Under a 3-day cold anticyclone episode, cooling also started about 2 h before sunset, and the difference between maximum rural (?2.0 °C h?1) and urban (?1.0 °C h?1) cooling rates diminished. Under cold-front conditions, the cooling rate was homogeneous for all sites and swang about zero throughout the day. The air temperature has a memory effect under lingering high-pressure conditions which intensified the UHI, in addition to the larger heat storage in the urban area. Cold anticyclone conditions promoted the development of the UHI; however, the cold air pool and relatively light winds smoothed out its intensity. Under the influence of cold fronts, the urban fabric had little effect on the city's air temperature field, and the UHI was imperceptible.  相似文献   

14.
苏州夏季城市热岛现状及影响因子分析研究   总被引:9,自引:4,他引:5  
利用2007年夏季常规和自动站气象观测资料,分析研究苏州城市热岛及其与影响因子关系.气温分布表明,市中心干将桥气温相对较高,而靠近太湖的新区镇湖镇、东山等郊区气温相对较低.苏州城市热岛强度日变化呈现双峰分布,两个峰值分别出现在10时和20时左右,最低值出现在16时左右.热岛强度与气象条件关系分析表明:(1)热岛强度受云量的影响较大;(2)与城区气温分布关系密切,相关系数为0.62;(3)与风向有关,城区风向为西风时的热岛强度大于东风时热岛强度;而城区热岛强度与风速关系不明显.另外相关站点的合理选取对城市热岛研究也十分重要.  相似文献   

15.
Urban heat island intensities (UHI) have been assessed based on in situ measurements and satellite-derived observations for the megacity Delhi during a selected period in March 2010. A network of micrometeorological observational stations was set up across the city. Site selection for stations was based on dominant land use–land cover (LULC) classification. Observed UHI intensities could be classified into high, medium and low categories which overall correlated well with the LULC categories viz. dense built-up, medium dense built-up and green/open areas, respectively. Dense urban areas and highly commercial areas were observed to have highest UHI with maximum hourly magnitude peaking up to 10.7 °C and average daily maximum UHI reaching 8.3 °C. UHI obtained in the study was also compared with satellite-derived land surface temperatures (LST). UHI based on in situ ambient temperatures and satellite-derived land surface temperatures show reasonable comparison during nighttime in terms of UHI magnitude and hotspots. However, the relation was found to be poor during daytime. Further, MODIS-derived LSTs showed overestimation during daytime and underestimation during nighttime when compared with in situ skin temperature measurements. Impact of LULC was also reflected in the difference between ambient temperature and skin temperature at the observation stations as built-up canopies reported largest gradient between air and skin temperature. Also, a comparison of intra-city spatial temperature variations based UHI vis-à-vis a reference rural site temperature-based UHI indicated that UHI can be computed with respect to the station measuring lowest temperature within the urban area in the absence of a reference station in the rural area close to the study area. Comparison with maximum and average UHI of other cities of the world revealed that UHI in Delhi is comparable to other major cities of the world such as London, Tokyo and Beijing and calls for mitigation action plans.  相似文献   

16.
A strong urban heat island (UHI) appeared in a hot weather episode in Suzhou City during the period from 25 July to 1 August 2007. This paper analyzes the urban heat island characteristics of Suzhou City under this hot weather episode. Both meteorological station observations and MODIS satellite observations show a strong urban heat island in this area. The maximum UHI intensity in this hot weather episode is 2.2℃, which is much greater than the summer average of 1.0℃ in this year and the 37-year (from 1970 to 2006) average of 0.35℃. The Weather Research and Forecasting (WRF) model simulation results demonstrate that the rapid urbanization processes in this area will enhance the UHI in intensity, horizontal distribution, and vertical extension. The UHI spatial distribution expands as the urban size increases. The vertical extension of UHI in the afternoon increases about 50 m higher under the year 2006 urban land cover than that under the 1986 urban land cover. The conversion from rural land use to urban land type also strengthens the local lake-land breeze circulations in this area and modifies the vertical wind speed field.  相似文献   

17.
北京城市热岛效应的昼夜变化特征分析   总被引:26,自引:9,他引:17  
利用最新获取的1998年3月~2001年12月北京地区自动站资料,对北京城市热岛效应进行了细致、完整的研究。选取城区的官园站和郊区密云站的气温差作为城市热岛效应强度指标。在验证了资料可靠性的基础上,研究了热岛强度昼夜变化的年、季、月及日变化特征,以及几种极端天气事件的逐时及平均热岛强度的变化,最后制作了连续3年的月平均逐时热岛强度变化的三维立体图。  相似文献   

18.
Summary This paper deals with variability in the air temperature field of an urban area during thermal advection, associated with frontal zones, and its interaction with an urban heat island (UHI). Thermal changes experienced in Wrocław, Poland form the basis of this case study analysis. The discussion also contributes to questions concerning the definition of the UHI and ways to select UHI episodes from existing data sets. It is shown that changes in temperature generated during periods of advection are of short duration, only a few hours at most, but thermal contrasts between various parts of a city at such times are sometimes large, reaching an intensity of 5–6 K, even as large as 9 K. Thus, their intensity is comparable with that of the UHI occurring on cloudless and windless nights. The thermal influence of advection is often greater than that due to urban factors; it is only on occasions with less dynamic advection, that a concentric temperature field is formed due to the modified physical properties of the city. In the majority of cases, the thermal field is non-concentric and this is linked with the location of a frontal zone at any given time. The thermal effects of advection recorded in a data set might easily be viewed as episodes of UHI existence, especially if analysis is conducted based on the data derived from just two stations – one urban the other rural. On occasions when such ‘quasi-UHI’ occur the role of the location of the rural, reference station is also evaluated. Precise definition of the urban heat island can be of significance when conducting comparative studies of the UHI in cities located in different geographical zones and when making an urban climate synthesis.  相似文献   

19.
On the Urban Heat Island Effect Dependence on Temperature Trends   总被引:2,自引:0,他引:2  
For U.S., Argentine and Australian cities, yearly mean urban to rural temperature differences (Tu-r) and rural temperatures (Tr) are negatively correlated in almost every case, suggesting that urban heat island intensity depends, among other parameters on the temperature itself. This negative correlation is related to the fact that interannual variability of temperature is generally lower in urban environments than in rural areas. This seems to hold true at low frequencies leading to opposite trends in the two variables. Hence, urban stations are prone to have lower trends in absolute value than rural ones. Therefore, regional data sets including records from urban locations, in addition to urban growth bias may have a second type of urban bias associated with temperature trends. A bulk estimate of this second urban bias trend for the contiguous United States during 1901–1984 indicates that it could be of the same order as the urban growth bias and of opposite sign. If these results could be extended to global data, it could be expected that the spurious influence of urban growth on global temperature trends during warming periods will be offset by the diminishing of the urban heat island intensity.  相似文献   

20.
A familiar problem in urban environments is the urban heat island (UHI), which potentially increases air conditioning demands, raise pollution levels, and could modify precipitation patterns. The magnitude and pattern of UHI effects have been major concerns of a lot of urban environment studies. Typically, research on UHI magnitudes in arid regions (such as Phoenix, AZ, USA) focuses on summer. UHI magnitudes in Phoenix (more than three million population) attain values in excess of 5°C. This study investigated the early winter period—a time when summer potential evapotranspiration >250 mm has diminished to <90 mm. An analysis of the winter magnitude of the heat island in Phoenix has been studied very little, and therefore with the aid of automobile transects, fixed stations, and remote sensing techniques, we investigated a portion of the large Phoenix metropolitan area known as the East Valley. The eastern fringes of the metropolitan area abut against breaks in sloping terrain. The highest UHI intensity observed was >8.0°C, comparable to summertime UHI conditions. Through analysis of the Oke (1998) weather factor ΦW, it was determined thermally induced nighttime cool drainage winds could account for inflating the UHI magnitude in winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号