首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A model is presented for the height of the mixed layer and the depth of the entrainment zone under near-neutral and unstable atmospheric conditions. It is based on the zero-order mixed-layer height model of Batchvarova and Gryning (1991) and the parameterization of the entrainment zone depth proposed by Gryning and Batchvarova (1994). However, most zero-order slab type models of mixed-layer height may be applied. The use of the model requires only information on those meteorological parameters that are needed in operational applications of ordinary zero-order slab type models of mixed-layer height: friction velocity, kinematic heat flux near the ground and potential temperature gradient in the free atmosphere above the entrainment zone. When information is available on the horizontal divergence of the large-scale flow field, the model also takes into account the effect of subsidence, although this is usually neglected in operational models of mixed-layer height owing to lack of data. Model performance is tested using data from the CIRCE experiment.  相似文献   

2.
The purpose of this paper is to test the ability of two quite different models to simulate the combined spatial and temporal variability of the internal boundary layer in an area of complex terrain and coastline during one day. The simple applied slab model of Gryning and Batchvarova, and the Colorado State University Regional Atmospheric Modelling System (CSU-RAMS) are tested by comparison with data gathered during a field study (called Pacific '93) of photochemical pollution in the Lower Fraser Valley of British Columbia, Canada. The data utilised here are drawn from tethered balloon flights, free flying balloon ascents, and downlooking lidar operated from an aircraft flown at roughly 3500 m above sea level. Both models are found to represent the temporal and spatial development of the internal boundary-layer depth over the Lower Fraser Valley very well, and reproduce many of the finer details revealed by the measurements.  相似文献   

3.
Early studies of mountain waves reported various results that have rarely been investigated since. These include: large-amplitude mountain waves above an unstable boundary layer much higher than the mountains; a repeated downwind drift and upwind jump of mountain waves; and larger vertical wind magnitude near sunrise and/or sunset. These are investigated using over 3,000 radiosondes and meso-strato-troposphere (MST) radar. Superadiabatic temperature gradients are found beneath mountain waves, explainable by convection which appears to raise the mountain-wave launching height. Movement of mountain-wave patterns is studied by a new method using height–time vertical wind data. A swaying motion of mountain waves, with period of a few minutes, appears to be equally upwind and downwind, rather than asymmetric at the heights measurable. Also, vertical wind shows no change in mean, variance or extreme values near sunrise and sunset, despite the expected diurnal changes of boundary-layer structure. An explanation for differences between MST radar and other measurements and models of mountain waves is suggested in terms of more than one variety of mountain wave. Type 1 has stable air near the ground; type 2 is above a convective/turbulent boundary layer of significant height as compared to the mountains.  相似文献   

4.
利用北京大学的微脉冲激光雷达(MPL)观测的偏南气流条件下的混合层高度和夹卷层厚度探测资料,研究简单天气条件下城市混合层的发展机制并与GB94的参数化方案相互映证.通过激光雷达遥感的混合层高度和夹卷层厚度计算了混合层顶的夹卷率A,得到其平衡夹卷阶段的值为0.24.在不考虑机械混合前提下反演了地面感热通量,结果表明遥感的反演值与梯度法的计算值有系统性偏差,但总体上仍旧有较好的相关.偏差量的大小反映了影响混合层发展的机械湍流的参数B,进一步通过GB91模式的模拟确定该参数的最佳值约为3.5.在此基础上讨论了混  相似文献   

5.
Surface Heterogeneity and Vertical Structure of the Boundary Layer   总被引:7,自引:3,他引:4  
  相似文献   

6.
The momentum flux data obtained by the gust probe aboard the NOAA DC-6 aircraft during GATE are analyzed. Vertical profiles are obtained for Phases I and III and correlated with vertical wind velocity profiles using the geostrophic departure method. Reasonable agreement is obtained using the horizontal equations of motion with negligible advective acceleration. The vertical profiles of momentum flux and wind speed variance compare well with the numerical model results of Deardorff (1972) and Wyngaard et al. (1974). Vertical distributions of power spectra for vertical eddy motion and cospectra corresponding to the momentum flux components are obtained along with the height variation of the dominant length scales of vertical eddy motion and the dissipation rate of turbulence kinetic energy. When normalized by mixed-layer similarity, these results agree well with previous determinations in the boundary layer over tropical oceans and over land.  相似文献   

7.
The mean flow profile within and above a tall canopy is well known to violate the standard boundary-layer flux–gradient relationships. Here we present a theory for the flow profile that is comprised of a canopy model coupled to a modified surface-layer model. The coupling between the two components and the modifications to the surface-layer profiles are formulated through the mixing layer analogy for the flow at a canopy top. This analogy provides an additional length scale—the vorticity thickness—upon which the flow just above the canopy, within the so-called roughness sublayer, depends. A natural form for the vertical profiles within the roughness sublayer follows that overcomes problems with many earlier forms in the literature. Predictions of the mean flow profiles are shown to match observations over a range of canopy types and stabilities. The unified theory predicts that key parameters, such as the displacement height and roughness length, have a significant dependence on the boundary-layer stability. Assuming one of these parameters a priori leads to the incorrect variation with stability of the others and incorrect predictions of the mean wind speed profile. The roughness sublayer has a greater impact on the mean wind speed in stable than unstable conditions. The presence of a roughness sublayer also allows the surface to exert a greater drag on the boundary layer for an equivalent value of the near-surface wind speed than would otherwise occur. This characteristic would alter predictions of the evolution of the boundary layer and surface states if included within numerical weather prediction models.  相似文献   

8.
9.
The model for the cloud-topped marine boundary layer during a cold air outbreak developed by Stage and Businger (1981a) is used in conjunction with a test profile based on a fall outbreak episode over Lake Ontario to study factors influencing marine boundary-layer evolution. Sensitivity tests are done which show changes in layer evolution resulting from variation of wind speed, radiative sky temperature, water surface temperature, humidity of the shoreline sounding and divergence. The behavior of the layer in the presence of a region of cold-water upwelling near the shore is also investigated. It is found that the main effect of the upwelling region is to delay modification of the boundary-layer air.  相似文献   

10.
A moving-grid finite-element model has been developed to model numerically the vertically integrated properties of the atmospheric boundary layer (ABL) in one dimension. The model equations for mean wind velocity and potential temperature are combined with a surface energy budget and predictive equations for boundary-layer height to simulate both stable and unstable ABLs. The nodal position defining the top of the boundary layer is one of the model unknowns and is determined by boundary-layer dynamics. The finite-element method, being an integral method, has advantages of accurate representation of both bulk values and their vertical derivatives, the latter being essential properties of the nocturnal boundary layer. Compared with observations and results of other models, the present model predicts bulk properties very well while retaining a simple and economical form.Journal Paper No. J-12996 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779.  相似文献   

11.
A three-dimensional, non-hydrostatic mesoscale model is used to study boundary-layer structure over an area characterized by the city of Copenhagen, the Øresund strait, and adjacent coastal farmland. Simulations are compared with data obtained on June 5, 1984 during the Øresund experiment.Under moderately strong wind conditions, a stable internal boundary layer (IBL) developed over the Øresund strait during the day. Near-surface winds decelerate over water due to diminished vertical momentum transfer.The turbulent kinetic energy field closely reflects the surface roughness distribution due to the imposed relatively strong wind forcing. TKE budgets over water, farmland and a city area are discussed by inspection of vertical profiles of the individual terms. The buoyancy term is used to indicate IBL heights because it changes sign at the boundary between different stability regimes. Measured and simulated dissipation rates show a decrease in the transition zone as the air travels over water and an abrupt increase when the IBL over a downwind city area is intersected. The top of the stable IBL is characterized by a minimum in the vertical TKE profile.  相似文献   

12.
利用WRF-Chem模式,采用3种边界层参数化方案 (YSU, MYJ和ACM2),针对1个晴空、静稳日 (2013年8月26日20:00—27日20:00(北京时)) 进行模拟,着重分析不同边界层参数化方案对夜间残留层形成及日出前后O3浓度垂直分布形式的模拟效果,并与固城站地面及垂直同步观测资料进行对比。结果表明:3种边界层参数化方案均能够模拟出温度及风速的区域分布形式以及风温垂直结构的变化特征;相比之下,MYJ方案模拟的夜间边界层高度较YSU方案和ACM2方案明显偏高,该对比结果可能是导致近地面污染物浓度模拟差异的重要原因;在夜间稳定层结至日出后稳定状态打破的边界层结构演变过程中,采用YSU方案和ACM2方案模拟的温度和风速垂直扩线形式与观测结果更为接近;同样采用非局地闭合的YSU方案和同时考虑局地和非局地闭合的ACM2方案,对于边界层高度内O3浓度垂直分布形式的模拟效果具有明显优势。  相似文献   

13.
The Ekman boundary layer over orography: An analysis of vertical motion   总被引:2,自引:0,他引:2  
A model of the planetary boundary layer is used to determine the field of vertical motion over large-scale orography. This model represents Ekman boundary-layer dynamics modified by the inclusion of accelerations of the geostrophic wind under the geostrophic momentum approximation. The orography is represented by a circular mountain. The inviscid solution is provided by the sum of a constant translation and a steady, uniform potential vorticity, anticyclonic vortex. The boundary-layer solution vanishes on the mountain, but is matched to the inviscid solution as the top of the boundary layer is approached. The vertical velocity field at the top of the boundary layer is determined by integration of the continuity equation. The field of motion is largely determined by descent from above into the anticyclonic circulation, as in the classical Ekman model. Contributions that arise from the inclusion of accelerations are associated with boundary-layer advection and ageostrophic divergence that produce vorticity tendencies. Finally, the boundary-layer vertical motion is shown to be comparable in magnitude to the vertical motion forced by inviscid flow over the orography, although the distributions of each are significantly different. Effects of mountain asymmetry and a changing pressure field, that can be treated more fully by numerical model simulations, are not considered in the present study.On leave at the University of Colorado, 1990.  相似文献   

14.
Statistics on the vertical wind shear in the boundary layer over the Indian Ocean were examined for the causes of regional and seasonal changes. Low-level cloud motions and surface ship wind reports were used to define the vertical shear. Temperature data from the ship reports were analyzed for boundary-layer stability related to the observed shears. Smaller wind shears were found in areas of large negative air-sea temperature difference (unstable boundary layers). The thermal wind effects were very small over most of the tropical Indian Ocean. The largest factor affecting the speed shear was the strength of the wind itself. Larger speed shear was found under high wind conditions. A small reduction in the direction difference between cloud and ship observations also was found under higher speeds. The scatter of cloud-ship comparisons around the mean (dispersion) also decreased for higher wind speeds. Daily gridded cloud motion and ship wind speed data had a correlation coefficient of 0.8 with a scatter of 1.9 m s-1 (r.m.s.) around the mean difference.  相似文献   

15.
Meteorological modelling in the planetary boundary layer (PBL) over Greater Paris is performed using the Weather Research and Forecast (WRF) numerical model. The simulated meteorological fields are evaluated by comparison with mean diurnal observational data or mean vertical profiles of temperature, wind speed, humidity and boundary-layer height from 6 to 27 May 2005. Different PBL schemes, which parametrize the atmospheric turbulence in the PBL using different turbulence closure schemes, may be used in the WRF model. The sensitivity of the results to four PBL schemes (two non-local closure schemes and two local closure schemes) is estimated. Uncertainties in the PBL schemes are compared to the influence of the urban canopy model (UCM) and the updated Coordination of Information on the Environment (CORINE) land-use data. Using the UCM and the CORINE land-use data produces more realistic modelled meteorological fields. The wind speed, which is overestimated in the simulations without the UCM, is improved below 1,000 m height. Furthermore, the modelled PBL heights during nighttime are strongly modified, with an increase that may be as high as 200 %. At night, the impact of changing the PBL scheme is lower than the impact of using the UCM and the CORINE land-use data.  相似文献   

16.
Summary ?A time-dependent semi-geostrophic Ekman boundary-layer model (SG), including slowly varying eddy diffusivity with height and inertial term effects, is developed to investigate the diurnal wind variation in the planetary boundary layer (PBL). An approximate analytical solution of this model is derived by using the WKB method, which extends the Tan and Farahani (1998)’s solution by including the vertical variable eddy viscosity. The features of the diurnal wind variation in the PBL mainly depend on three factors: the latitude, horizontal momentum advection and eddy viscosity. The vertical variable eddy viscosity has little influence on diurnal wind variation in the PBL at the low latitude, however its effect may be exacerbated in the mid- and high latitudes. In comparing with the constant eddy viscosity case, the decreasing (increasing) with height eddy viscosity produces a large (small) maximum wind speed (MWS) in the PBL, however, the eddy viscosity that has a mid-layer peak in the vertical gives rise to a higher height of occurrence of MWS. For the boundary-layer wind structure, there is a singular point when the modified SG inertial oscillation frequency η equals the forcing frequency ω. The isotachs of boundary-layer wind speed have almost no tilt to left or right relative to time evolution and the occurrence time of the MWS is the earliest at the singular point. The feature will be enhanced in the decreasing with height eddy viscosity case and weakened in the eddy viscosity initially increasing with height case. Received April 6, 2001; accepted December 27, 2001  相似文献   

17.
By deriving the discrete equation of the parameterized equation for the New Medium-Range Forecast (NMRF) boundary layer scheme in the GRAPES model, the adjusted discrete equation for temperature is obviously different from the original equation under the background of hydrostatic equilibrium and adiabatic hypothesis. In the present research, three discrete equations for temperature in the NMRF boundary layer scheme are applied, namely the original (hereafter NMRF), the adjustment (hereafter NMRF-gocp), and the one in the YSU boundary-layer scheme (hereafter NMRF-TZ). The results show that the deviations of height, temperature, U and V wind in the boundary layer in the NMRF-gocp and NMRF-TZ experiments are smaller than those in the NMRF experiment and the deviations in the NMRF-gocp experiment are the smallest. The deviations of humidity are complex for the different forecasting lead time in the three experiments. Moreover, there are obvious diurnal variations of deviations from these variables, where the diurnal variations of deviations from height and temperature are similar and those from U and V wind are also similar. However, the diurnal variation of humidity is relatively complicated. The root means square errors of 2m temperature (T2m) and 10m speed (V10m) from the three experiments show that the error of NMRF-gocp is the smallest and that of NMRF is the biggest. There is also a diurnal variation of T2m and V10m, where T2m has double peaks and V10m has only one peak. Comparison of the discrete equations between NMRF and NMRF-gocp experiments shows that the deviation of temperature is likely to be caused by the calculation of vertical eddy diffusive coefficients of heating, which also leads to the deviations of other elements.  相似文献   

18.
19.
This study conducted meteorological simulations in northern Colombia by analyzing different planetary boundary layer (PBL) schemes available in the numerical Weather Research and Forecasting (WRF) model. The study area included three nested domains with horizontal resolutions of 18 km, 6 km, and 2 km, with 38 vertical levels. The evolution and structure of the PBL were analyzed during the driest months (March, April, and May 2016) and in regions with the highest particulate matter concentrations. Sensitivity analysis of the WRF model was performed with two local and two non-local PBL schemes. The results were validated using observations of the surface air temperature, relative humidity, and surface wind speed collected from three meteorological stations in the area. The PBL heights were experimentally determined using radiosonde data provided by a station located in the center of the study area. Variations in PBL heights were estimated using linear regression methods and minimization of statistical errors for the bulk Richardson number, as well as analysis of vertical temperature and wind profiles. The WRF model reliably reproduced the daily values and diurnal cycles of temperature, relative humidity, and wind speed within the PBL and accounted for the influence of topography and sea breezes. Horizontal heat advection dominates the upwelling of air masses when sea breezes are active. The onshore wind direction starts to change from east to northwest, implying a decay in the land breeze regime. All schemes overestimate the mixing height and tend to underestimate surface air temperature values at night. All show wetter conditions and underestimate wind speed. Although the non-local Yonsei University (YSU) scheme shows the best performance, it also shows the largest sources of errors when determining the behavior of the surface layer during stable conditions. Relative humidity and wind speed estimates provided by the local Mellor‐Yamada‐Nakanishi‐Niino (MYNN) scheme were closer to those recorded at the meteorological stations.  相似文献   

20.
何京伟  谈哲敏 《气象科学》2001,21(4):433-444
在边界层动力学中,涡动粘性系数是影响边界层风场结构的一个重要参数。本文利用边界层动力学中的Ekman动量近似理论,给出了涡动粘性系数随高度缓变条件下的Ekman动量近似边界层模式解,着重讨论了边界层的风场结构、水平散度、垂直涡度以及边界层顶部的垂直速度。结果分析表明:与常值涡动粘性系数情况相比,在边界层低层随高度增加的涡动粘性系数可以导致低层边界层风速随高度迅速增加,即风速垂直切变增加,同时风速矢与地转风之间的夹角减小。惯性项作用可以导致上述作用在气旋性区域减小、而在反气旋性区域增大。随高度增加的涡动粘性系数导致水平散度绝对值、垂直涡度绝对值以及边界层顶部的垂直速度绝对值在气旋性区域减小,而在反气性旋区域增大。涡动粘性系数与惯性之间的非线性相互作用是边界层动力学中重要过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号