首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解邢台沙河市冬季大气污染特征,选取2017年12月至2018年2月沙河市区3个省控站点(司法局、市政府、宣传中心)的逐时监测数据,分析了沙河市主要污染物的时空分布特征和潜在源区。污染物浓度特征分析表明:整个冬季司法局、市政府和宣传中心站点的细颗粒物(PM2.5)平均浓度分别为118.0 μg/m3、121 μg/m3和135 μg/m3。在大气自然活动和人为污染排放的共同作用下,PM10、PM2.5、SO2、NO2和CO均有明显的日变化特征。整个冬季沙河市的ρ(PM2.5)/ρ(PM10)、ρ(SO2)/ρ(NO2)均值分别为0.57和1.05(ρ为各物质的浓度)。且随着污染加重,ρ(PM2.5)/ρ(PM10)、ρ(SO2)/ρ(NO2)均明显升高,表明燃煤贡献增加;污染物空间分布特征分析表明:位于3个站点东北处的玻璃企业产生的污染物可能对监测站点造成了一定影响。污染物空间差异分析表明,区域污染范围越大、强度越高,大气污染的空间差异性越小;潜在源分析表明:沙河市PM2.5的强潜在源区分布在其周边区域,随着PM2.5浓度增加,强潜在源区呈缩小趋势。沙河市东南部的本地源对PM2.5浓度有主要贡献,而此处正是玻璃企业的聚集地。  相似文献   

2.
利用2015年黄石市5个监测站点可吸入颗粒物(PM10)和细颗粒物(PM2.5)的在线监测数据和风向、风速、气温、气压等常规地面气象要素观测资料,分析了黄石市大气PM10和PM2.5的质量浓度水平分布特征及其与气象参数的关系。结果表明:2015年黄石市5个监测站点大气PM10和PM2.5年均浓度范围分别为95.8—108.6μg·m^-3和64.3—68.9μg·m^-3,均超过国家二级标准;季均质量浓度呈现显著的冬季高夏季低的变化规律,冬季PM10和PM2.5的质量浓度分别为(143.9±62.2)μg·m^-3和(95.5±44.5)μg·m^-3,夏季PM10和PM2.5的质量浓度分别为(75.2±24.0)μg·m^-3和(50.7±17.3)μg·m^-3。5个监测站中,下陆区、西塞山区和铁山区的PM10和PM2.5颗粒物污染较为严重;各站点大气PM10和PM2.5质量浓度显著相关。大气颗粒物浓度与气象因素的分析显示,黄石市大气颗粒物浓度与气温呈显著的负相关关系,与气压呈正相关关系,与风速和相对湿度的相关性不显著,受风向影响变化较大。  相似文献   

3.
为了监测北京奥运主场馆附近大气颗粒物的污染状况以及评估奥运污染源减排措施对北京大气颗粒物质量浓度变化的影响,利用颗粒物在线监测仪器TEOM于2007年和2008年夏季,在奥运主场馆附近的中国科学院遥感应用研究所办公楼楼顶对大气颗粒物PM10和PM2.5进行了连续同步观测。结果表明,2007年夏季监测点附近大气PM10与PM2.5质量浓度的平均值分别为153.9和71.2μg.m-3,而2008年夏季PM10与PM2.5质量浓度的平均值分别为85.2和52.8μg.m-3。与奥运前一年同时段相比,奥运时段大气PM10和PM2.5的质量浓度分别下降44.5%和25.1%。对比分析奥运前后的2次典型污染过程发现,空气相对湿度的增加和偏南气流输送的共同影响易造成大气颗粒物的累积增长,而降雨的湿清除作用和偏北气流则会使大气颗粒物浓度迅速降低。在相近的气象条件下,奥运前后的污染过程中,大气细粒子的日均增长速率分别为25.1和13.9μg.m-3.d-1,而大气粗粒子的日均增长速率分别为20.8和2.2μg.m-3.d-1,奥运时段污染累积过程中大气粗、细粒子的增长速率分别显著低于和略低于奥运前同时段污染过程中颗粒物的增长速率。污染源减排措施的实施是奥运期间大气颗粒物质量浓度降低的主要原因,从控制效果来看,奥运期间实施的污染源减排措施对大气粗粒子的控制效果明显好于大气细粒子。  相似文献   

4.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

5.
为深入了解晋城市颗粒物浓度时空分布特征,对晋城市2017年12月至2018年5月国控点、小型站和微型站PM2.5及PM10小时浓度数据进行收集整理,并进行空间插值分析和时间变化趋势分析及与气象监测数据的相关分析。结果表明:颗粒物浓度在冬、春季节具有明显差异,冬季PM10与PM2.5高值区主要位于东北部及东南小部分区域,春季PM10高值区位于城区南部区域,PM2.5高值区主要集中于城区。晋城市城区和郊区PM10与PM2.5月均浓度整体呈单峰型变化,PM10在4月份最高(157.54±5.67μg·m^-3),PM2.5在1月份最高(94.08±2.25μg·m^-3)。冬季PM2.5/PM10平均为0.57,春季平均为0.45。颗粒物小时浓度的变化呈现单峰单谷的型式,冬季PM10与PM2.5小时平均浓度最高值均出现在10时,春季均出现在09时。监测期间晋城市PM10与PM2.5的小时浓度值与相对湿度有较高的正相关性(p<0.01),与风速、风向有较高的负相关性(p<0.01),与温度和气压的相关性较低。冬季,东北至正南风向时,PM10与PM2.5的浓度普遍高于西北风向时的浓度,对晋城冬、春季国控点颗粒物浓度贡献率最高的风向风速为东南偏南风向,风速在1 m/s以内。  相似文献   

6.
利用北京市空气质量监测数据和气象资料,对2013年2月28日和3月9日两次沙尘污染过程PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)、PM10(空气动力学当量直径小于等于10μm的颗粒物,即可吸入颗粒物)浓度及PM2.5浓度/PM10浓度比值的变化特征进行了分析,研究结果表明:(1)沙尘开始影响北京时,PM2.5与PM10浓度表现出反位相变化,PM10浓度在两次沙尘过程中2 h内分别上升50.8%与202.4%,最高达800μg m-3以上;PM2.5浓度分别下降58.3%与50.9%,直至下降至35μg m-3以下,PM2.5有明显改善现象。(2)虽然PM2.5浓度在沙尘到达前有缓升的迹象,但沙尘抵达后,PM2.5浓度持续快速下降,PM2.5浓度/PM10浓度比值由沙尘影响前的0.75以上降至0.25以下。沙尘影响前,PM2.5日均值均超过150μg m-3,北京地区处于重度污染水平。这说明沙尘来临前以人为污染为主,主要由细粒子"贡献",沙尘来临后的空气污染,主要由巨、大粒子的沙尘"贡献"。  相似文献   

7.
城市近郊常受到城区污染物扩散和输送的影响,2010年7月21日至8月6日利用β射线颗粒物连续监测仪和黑碳仪对北京西北郊区PM2.5和黑碳气溶胶(BC)进行了连续观测。结果表明,北京西北郊区夏季PM2.5和BC的质量浓度分别是(133.16±81.64)、(2.89±1.62)μg/m3。受明显的山谷风的影响,来自观测点东南方的城区的气流使PM2.5和BC浓度升高,来自观测点西北方向的风则使PM2.5和BC浓度降低。受局地排放、区域输送和气象条件的共同影响,郊区的PM2.5和BC浓度表现出明显日变化特征,二者浓度在上午、傍晚和夜间显著上升。  相似文献   

8.
广州地区旱季一次典型灰霾过程的特征及成因分析   总被引:18,自引:1,他引:17  
通过研究2009年11月广州市气溶胶颗粒物质量浓度(PM10、PM2.5、PM1)、黑碳浓度、散射系数(Scatter)等大气成分要素,以及微波辐射计、激光雷达及风廓线雷达所探测的风、温、湿等边界层结构,统计分析广州旱季一次典型灰霾过程(2009年11月23—29日)中气溶胶颗粒物及其光学特性的时空变化特征,并配合天气形势背景、边界层结构对其形成原因进行详细分析。在典型灰霾过程中,黑碳浓度高达58.7μg/m3,散射系数高达1 902.7 Mm-1,PM10浓度高达423.5μg/m3,PM2.5浓度高达355.7μg/m3,PM1浓度高达286.5μg/m3。通过对同期的气象条件分析表明在广州地区旱季,区域性污染过程,特别是灰霾天气的形成具有以下三种气象条件:大气边界层高度较低;高压变性出海的天气形势与之密切相关;在偏东和偏南气流带来的高湿度环境下,气溶胶吸湿增长效应显著,导致出现严重灰霾天气。  相似文献   

9.
天津冬季重霾污染过程及气象和边界层特征分析   总被引:3,自引:2,他引:1  
京津冀大气灰霾污染严重,天津市作为其核心组成之一其污染形势亦严峻。选取2013年2月20~28日天津重霾污染时段7站PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)和气态污染物数据,结合北京污染数据、地面气象要素、能见度、边界层温湿和风廓线、后向轨迹,深入分析重霾污染过程特征及气象和边界层成因。结果显示,研究时段天津PM2.5、SO2、NO2、CO和O3浓度均值为150、87、56、2.4和22μg m-3,气态污染物各站差异显著,但仅有SO2全面超过国家空气质量一级标准(50μg m-3),而PM2.5具有区域同步变化特征,且严重超标,是一级标准(35μg m-3)的2~8倍,最高小时均值高达364μg m-3;高浓度PM2.5是导致低能见度的主因,能见度小于10 km对应PM2.5阈值为50μg m-3。弱风和高湿度导致局地排放累积,PM2.5始增,在高湿度条件下,持续偏南风促使其稳步增加,配合弱北风和弱东风PM2.5震荡上扬,污染高值阶段,南北气流短时迅速切换,区域污染传输叠加污染的循环累积,PM2.5浓度峰值达到最高;除因边界层强东风导致的平流逆温外,高浓度PM2.5与平流逆温密切相关;高污染时段高湿主要集中在500 m以下,且随高度递减幅度较大;位于200~600 m的低空急流一定程度抑制污染上升,尤其持续强东风使PM2.5浓度稳步降低到二级水平,污染迅速有效清除最终依赖整层的强西北风。北京、环绕天津的河北中部和西南部地区对天津重污染有显著贡献。  相似文献   

10.
秦皇岛地处河北省东北部,是环渤海重要的港口城市,在近几年京津冀地区减排效果较好的情况下,于2019年1月出现了多次持续细颗粒物(PM2.5)污染过程。因此本文利用耦合了数值源解析模块ISAM(Integrated Source Apportionment Method)的区域空气质量模式RAMS-CMAQ(Regional Atmospheric Modeling System–Community Multiscale Air Quality),对2019年1月秦皇岛地区PM2.5进行模拟,并将PM2.5质量浓度高于(低于)75 μg m-3的时段划分为污染(清洁)时段,分别探讨了两个时段本地排放源对秦皇岛市PM2.5质量浓度的贡献情况,并且进一步探讨了秦皇岛各区县及外地排放源对秦皇岛市4个国控环境监测站点(第一关站、北戴河站、市监测站、建设大厦站)PM2.5质量浓度的区域传输特征。结果表明,秦皇岛地区PM2.5质量浓度整体呈“南高北低”式分布。清洁时段,PM2.5质量浓度受本地贡献较大,青龙县、卢龙县大部分地区贡献为40%~50%,海港区、抚宁区、北戴河区、第一关区及昌黎县大部分地区贡献在60%以上;4个国控环境监测站点受跨界输送贡献占34.7%~41.6%。污染时段,秦皇岛市本地贡献相对于清洁时段整体下降10%左右,当地大气污染受到跨界区域传输影响增加;而在4个国控站中,北戴河站、第一关站受到跨界输送贡献分别下降1.0%和2.3%;市监测站、建设大厦站受到跨界输送贡献分别上升2.9%和2.0%。  相似文献   

11.
天津城区秋季PM2.5质量浓度垂直分布特征研究   总被引:8,自引:2,他引:6  
孙玫玲  穆怀斌  吴丹朱  姚青  刘德义 《气象》2008,34(10):60-66
为研究天津大气颗粒物的污染水平和时空分布特征,利用天津大气边界层观测铁塔(255m),分别在40m、120m、220m处设立监测点,通过监测到的PM2.5的质量浓度,结合PM10、能见度等资料来分析污染物的时空分布规律和分布特征.结果表明,天津城区PM2.5污染水平相当严重,日均质量浓度远高于美国1997年制定的65μg*m-3的排放标准.混合层厚度和稳定度的变化对PM2.5浓度变化有一定的影响,随混合层厚度的变化,不同高度PM2.5质量浓度值有所不同.23时至11时,120m浓度明显高于其它各层,11-18时,由于大气扩散能力的增强,三层污染物质量浓度开始下降,而到了18-23时,低层污染物浓度较高,各层浓度总体趋势为120m>40m>220m.PM2.5质量浓度的日变化与稳定度的变化较一致.气象条件和早晚出行高峰期的影响导致PM2.5的质量浓度出现峰值.PM10与PM2.5的总体变化趋势基本一致,说明污染物来源基本相同.能见度水平和细粒子污染水平呈现较好的负相关,细粒子质量浓度的高低是决定能见度好坏的主要因子.降水过程是颗粒物从大气中清除的重要机制.  相似文献   

12.
邢军  孙颖  李德恒 《吉林气象》2012,(1):8-11,26
利用四平中韩沙尘暴监测站颗粒物监测仪器GRIMM180观测的2011年数浓度及ρ(PM10)、ρ(PM2.5)和ρ(PM1.0)数据及台站的常规气象观测资料,分析了该地区数浓度、质量浓度的变化特征及与气象条件的相关性。结果表明,PM2.5和PM10污染存在着明显的季节性变化,季节变化特征基本一致,表现为冬季>春季>秋季>夏季,冬季最重,夏季最轻;颗粒物质量浓度日变化呈现两峰特征,ρ(PM10)、ρ(PM2.5)和ρ(PM1.0)之间有很好的相关性,ρ(PM2.5)/ρ(PM10)的平均值为65.7%,ρ(PM1.0)/ρ(PM2.5)的平均值83.9%,ρ(PM1.0)/ρ(PM10)的平均值55.2%;四平地区年主导风向为SSW,颗粒物质量浓度变化受沙尘移动路径影响较大,采暖期间供热燃煤排放对空气质量有较大程度的影响,其中大风、浮尘等天气条件下颗粒物质量浓度值呈较大突变特性。  相似文献   

13.
利用空气质量监测资料、地面气象观测及微波辐射计数据,对2017年1月1—8日广州市出现的一次灰霾污染过程进行了分析。结果表明:(1)1月1—8日逐日灰霾时出现6~17个,共出现74个,主要是轻微和轻度级别,占全部灰霾时的95.9%,其中5日出现了3个时次的中度灰霾;(2)灰霾污染期间颗粒物PM2.5和PM10均超标,5日颗粒物PM2.5和PM10质量浓度14:00—17:00 4个时次达到重度污染级别,广雅中学站5日14:00 PM2.5质量浓度最大值达292μg/m3(严重污染),超标3.89倍,颗粒物PM10最高质量浓度达238μg/m3,超标1.59倍;(3)受地面均压场控制,近地层平均风速较小,4和5日平均风速1.5 m/s左右;4和5日多次出现逆温,4日02:00出现贴地逆温,09:00逆温出现在850~1 000 m,5日02:00和09:00均为贴地逆温;贴地逆温高度均为100 m左右。霾污染期间空气相对湿度较大,有88.1%时次达90%以上。  相似文献   

14.
北京地区夏末秋初气象要素对PM2.5污染的影响   总被引:1,自引:0,他引:1  
利用北京宝联站及北京上甸子大气本底站2006-2008年的7-9月PM2.5连续观测资料以及北京市观象台的探空数据、海淀气象站的风廓线雷达和降水量等资料,对北京地区夏末秋初PM2.5的质量浓度特征及其与气象要素的关系进行了统计分析.结果表明:城区站各月平均PM2.5质量浓度明显高于郊区站,高空偏南气流的输送是造成城区及本底地区出现细颗粒物污染的主要原因.从地面风速来看,城区当北风和南风分别达到2m·s-1和3.5 m·s-1以上时能起到扩散作用;郊区在低风速的北风条件下也能起到扩散和稀释作用,而南风基本上对郊区的颗粒物无扩散作用.PM2.5质量浓度在降水前后的清除量与降水量、初始质量浓度均呈正相关关系,城区及郊区的云下清除过程更多取决于降水前污染物的浓度,降水量作用较弱.当混合层高度突破1500 m时,垂直扩散对污染物的稀释扩散效果明显.  相似文献   

15.
采用β射线法大气颗粒物监测仪连续观测了汕头市PM10和PM2.5浓度,分析2015年11月至2017年10月的PM10和PM2.5的浓度水平、时间变化规律等。结果表明,PM10的年均日浓度为67.3μg/m~3,PM2.5的年均日浓度为35.9μg/m~3,其质量浓度日变化特征与人类活动和气象条件变化密切相关。PM10和PM2.5的月平均质量浓度变化趋势全年保持基本一致,谷值出现在6月,峰值出现在3月和12月。PM2.5/PM10比值为0.533,相关系数为0.75,存在显著的线性关系。  相似文献   

16.
利用CALPUFF耦合MM5的大气扩散模型,对四川省凉山彝族自治州2007年工业排放PM10的扩散传输进行数值模拟,分析了污染物的浓度时空分布以及影响污染物浓度分布的主要因素.结果表明:CALPUFF耦合MM5模型对凉山州2007年工业排放PM10的浓度模拟有着较好的适用性;污染物主要沿着安宁河和黑水河分布,浓度分布特征随时间变化,其中冬季污染较为严重;各市(县)的PM10浓度值有空间差异,西昌和甘洛污染最为严重,季平均浓度分别为67.81μg/m3和57.23μg/m3;凉山州PM10的浓度分布受气象条件、地形和污染源的地理位置的综合影响.  相似文献   

17.
为了探明苏州地区大气污染物的时空分布特征,收集2012年苏州、昆山和太仓三个大气环境监测站的PM2.5、PM10等大气污染物观测资料及三站全自动气象观测数据,分析三站的PM2.5和PM10的时空分布特征;探讨气象条件对PM2.5和PM10的影响。结果表明:(1) 苏州市区PM2.5和PM10的年平均值分别是42.5和85.5 μg/m3,周边地区的年平均值是62.0和111.5 μg/m3;一年中苏州地区PM2.5和PM10的最大值出现在春季,最小值出现在夏季。(2) 一天中,苏州地区PM2.5和PM10的最大值出现在上午的8—9点。(3) 降水、气温、风速、气压等气象条件对PM2.5和PM10高浓度污染变化有重要影响。降水对PM2.5和PM10具有明显的清除作用,风则有较好的稀释扩散效应;PM2.5和PM10的浓度随气温的上升而升高;在高压状态下,PM2.5和PM10的浓度上升。(4) 苏州站PM2.5/PM10的变化范围和平均值都低于昆山站和太仓站,且PM2.5/PM10日变化存在明显的季节差异。   相似文献   

18.
利用Weather Research and Forecasting/Chemistry(WRF/Chem)空气质量模式模拟研究了山东地区2014年2月21~26日期间的中度细颗粒物(PM2.5)污染过程,并从模拟结果评估、分布及演变特征、与气象条件的关系等方面分析了PM2.5的模拟特征。模拟研究结果表明,山东PM2.5积聚期间多为弱的偏南风控制,消散阶段受西北风控制,当北京—天津—河北(京津冀)一带同时存在更为严重的PM2.5污染时,西北冷空气的平流输送使得山东部分地区的PM2.5浓度在完全削弱前又出现了一个高峰值。污染期间山东全省平均PM2.5的模拟浓度为125μg m~(-3),伴随着地面3.0 m/s的低风速、370 m低边界层高度和70%左右的相对湿度,其中PM2.5的模拟值受边界层高度的影响最大。整个污染期间全省平均PM2.5模拟值高于监测值10%左右,但是对于局部站点300μg m~(-3)及以上的观测峰值,模式模拟结果明显偏低。模拟效果的评估结果是:山东南部最好、然后是山东半岛,山东中部、西北部地区较差。  相似文献   

19.
2010年春季民勤沙地近地面沙尘气溶胶浓度特征   总被引:4,自引:2,他引:2       下载免费PDF全文
为了更好地研究沙尘气溶胶起沙和输送特征,2010年4—5月,在民勤周边沙地利用EZ LIDAR ALS300ALS450型激光雷达和GRI MM180型颗粒物采样器进行了大气气溶胶的外场连续观测,取得了晴天、浮尘、扬沙和沙尘暴天气条件下沙尘气溶胶总后向散射垂直剖面图和PM10、PM2.5、PM1.0质量浓度采样资料,其中包2010年4月24日特强沙尘暴过程资料。结果表明:春季民勤近地层大气中沙尘气溶胶浓度较高,且随气象要素的变化很大;在整个观测期内,PM10、PM2.5和PM1.0的平均质量浓度分别为202.3、57.4μg/m3和16.7μg/m3。在不同天气条件下,PM10、PM2.5和PM1.0质量浓度的变化有较好的相关性,但变化趋势有所不同。在沙尘暴天气条件下,PM10的日平均质量浓度高达2469.1μg/m3,是背景天气条件下PM10日平均质量浓度的100多倍,是浮尘天气条件下PM10日平均质量浓度的8倍,是扬沙天气条件下PM10日平均质量浓度的2倍。PM2.5在沙尘暴天气下日平均质量浓度为460.3μg/m3,是背景天气条件下PM2.5日平均质量浓度的45倍,是浮尘天气条件下PM2.5日平均质量浓度的6倍,是扬沙天气条件下PM2.5日平均质量浓度的1.4倍。PM1.0在沙尘暴天气条件下的日平均浓度为92.7μg/m3,是背景天气条件下PM1.0日平均浓度的13倍,是浮尘天气条件下PM1.0日平均浓度的7倍,是扬沙天气条件下PM1.0日平均浓度的1.3倍。可见,风速增大时,沙尘粒子浓度的增加对粒子粒径是有选择的,小粒子比重随沙尘浓度增加而相对减小,大粒子比重随沙尘浓度增加而相对增多。通过对2010年4月24日特强沙尘暴过程的研究表明,一次沙尘暴过程往往包括沙尘暴、扬沙和浮尘天气中的两种类型。通过对激光雷达数据分析发现,在强沙尘暴发生过程当中,民勤沙地发生了非常严重的风蚀起沙现象。  相似文献   

20.
利用CALPUFF耦合MM5的大气扩散模型,对四川省凉山彝族自治州2007年工业排放PM10的扩散传输进行数值模拟,分析了污染物的浓度时空分布以及影响污染物浓度分布的主要因素。结果表明:CALPUFF耦合MM5模型对凉山州2007年工业排放PM10的浓度模拟有着较好的适用性;污染物主要沿着安宁河和黑水河分布,浓度分布特征随时间变化,其中冬季污染较为严重;各市(县)的PM10浓度值有空间差异,西昌和甘洛污染最为严重,季平均浓度分别为67.81μg/m3和57.23μg/m3;凉山州PM10的浓度分布受气象条件、地形和污染源的地理位置的综合影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号