首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Daily global solar irradiation (R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.  相似文献   

2.
Sensitivity of carbon uptake and water use estimates to changes in physiology was determined with a coupled photosynthesis and stomatal conductance (g s) model, linked to canopy microclimate with a spatially explicit scheme (MAESTRA). The sensitivity analyses were conducted over the range of intraspecific physiology parameter variation observed for Acer rubrum L. and temperate hardwood C3 (C3) vegetation across the following climate conditions: carbon dioxide concentration 200–700 ppm, photosynthetically active radiation 50–2,000 μmol m?2 s?1, air temperature 5–40 °C, relative humidity 5–95 %, and wind speed at the top of the canopy 1–10 m s?1. Five key physiological inputs [quantum yield of electron transport (α), minimum stomatal conductance (g 0), stomatal sensitivity to the marginal water cost of carbon gain (g 1), maximum rate of electron transport (J max), and maximum carboxylation rate of Rubisco (V cmax)] changed carbon and water flux estimates ≥15 % in response to climate gradients; variation in α, J max, and V cmax input resulted in up to ~50 and 82 % intraspecific and C3 photosynthesis estimate output differences respectively. Transpiration estimates were affected up to ~46 and 147 % by differences in intraspecific and C3 g 1 and g 0 values—two parameters previously overlooked in modeling land–atmosphere carbon and water exchange. We show that a variable environment, within a canopy or along a climate gradient, changes the spatial parameter effects of g 0, g 1, α, J max, and V cmax in photosynthesis-g s models. Since variation in physiology parameter input effects are dependent on climate, this approach can be used to assess the geographical importance of key physiology model inputs when estimating large scale carbon and water exchange.  相似文献   

3.
利用2007—2016年国际卫星云气候计划(International Satellite Cloud Climatology Project,ISCCP)、云和地球辐射能量系统(Clouds and the Earth''s Radiant Energy System,CERES)和中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)卫星反演云产品,对比分析了不同数据反演的中国地区云系结构的宏微观特征,并采用复合评价指标定量评估了不同数据之间时间和空间上的一致性。结果表明:三套卫星数据都能较好地反演出中国地区总云量呈南高北低、东高西低、夏高冬低的分布特征,但通过比较时间技巧(Temporal Skill,ST)及空间技巧(Spatial Skill,SS)复合评价指标及其各项分量发现,与MODIS相比,CERES与ISCCP数据反演的总云量时间序列演变特征明显更为一致,且其评分均有南方优于北方,夏季优于冬季的特征;进一步分析不同高度云量的ST评分发现,CERES和ISCCP两套数据在南方地区的总云量差异主要来自于低云量的绝对偏差,而北方地区的偏差则同时存在于低云和中云;对比分析MODIS和CERES反演的云滴有效半径发现,高云对应的冰相云一致性较高,而中低云相对应的液相云的偏差则有夏季高于冬季的规律。针对夏季液相和冰相云滴粒径及概率密度分析则表明,相比CERES数据,MODIS对夏季液水和冰水粒子的有效半径在不同地区均有不同程度的高估,液(冰)水谱宽则更宽(窄)。  相似文献   

4.
Modern climatic changes in cloud cover over Russia are analyzed from standard ground-based meteorological observations in 1951–2000 and information on cloudiness obtained from the actinometrical observations in 1976–2000. In addition to studies of changes in total cloud amount, a special attention is paid to the distribution of basic forms of cloudiness with respect to their frequency. A spatial generalization of the results for large-scale regions (the European and Asian parts of Russia) allowed revealing dominant tendencies in cloud cover changes that are slightly related to seasons of year and reflect large-scale changes in cloud characteristics in the second half of the 20th century.  相似文献   

5.
6.
利用2001年7月至2011年7月甘肃省榆中县地面测站的每日8次云量资料和同期NCEP每日4次等压面资料,由NCEP资料构造预报因子,以总云量和低云量为预报对象,分析预报因子和预报对象的相关性,采用逐步回归方法建立榆中县逐月8个时次的云量预报方程并进行回代;并利用2012年的资料检验预报方程的预报效果。结果表明:云量主要受整层湿度、垂直运动、不稳定能量、槽强度指数和700 hPa水汽通量散度影响,其中湿度状况和垂直运动是重要因素。建立的预报方程对总云量的预报效果比低云量好;总云量平均预报误差在2成左右,低云量平均预报误差在3成左右;预报值变化趋势可以部分地反映实际云量的变化趋势。  相似文献   

7.
Knowledge of cloud vertical structure is important for meteorological and climate studies due to the impact of clouds on both the Earth’s radiation budget and atmospheric adiabatic heating. Yet it is among the most difficult quantities to observe. In this study, we develop a long-term (10 years) radiosonde-based cloud profile product over the Southern Great Plains and along with ground-based and space-borne remote sensing products, use it to evaluate cloud layer distributions simulated by the National Centers for Environmental Prediction global forecast system (GFS) model. The primary objective of this study is to identify advantages and limitations associated with different cloud layer detection methods and model simulations. Cloud occurrence frequencies are evaluated on monthly, annual, and seasonal scales. Cloud vertical distributions from all datasets are bimodal with a lower peak located in the boundary layer and an upper peak located in the high troposphere. In general, radiosonde low-level cloud retrievals bear close resemblance to the ground-based remote sensing product in terms of their variability and gross spatial patterns. The ground-based remote sensing approach tends to underestimate high clouds relative to the radiosonde-based estimation and satellite products which tend to underestimate low clouds. As such, caution must be exercised to use any single product. Overall, the GFS model simulates less low-level and more high-level clouds than observations. In terms of total cloud cover, GFS model simulations agree fairly well with the ground-based remote sensing product. A large wet bias is revealed in GFS-simulated relative humidity fields at high levels in the atmosphere.  相似文献   

8.
Based on the NOAA's Advanced Very High Resolution Radiometer(AVHRR) Pathfinder Atmospheres Extended(PATMOS-x) monthly mean cloud amount data, variations of annual and seasonal mean cloud amount over the Yangtze River Delta(YRD), China were examined for the period 1982–2006 by using a linear regression analysis. Both total and high-level cloud amounts peak in June and reach minimum in December, mid-level clouds have a peak during winter months and reach a minimum in summer, and lowlevel clouds vary weakly throughout the year with a weak maximum from August to October. For the annual mean cloud amount, a slightly decreasing tendency(–0.6% sky cover per decade) of total cloud amount is observed during the studying period, which is mainly due to the reduction of annual mean high-level cloud amount(–2.2% sky cover per decade). Mid-level clouds occur least(approximately 15% sky cover) and remain invariant, while the low-level cloud amount shows a significant increase during spring(1.5% sky cover per decade) and summer(3.0% sky cover per decade). Further analysis has revealed that the increased low-level clouds during the summer season are mainly impacted by the local environment. For example,compared to the low-level cloud amounts over the adjacent rural areas(e.g., cropland, large water body, and mountain areas covered by forest), those over and around urban agglomerations rise more dramatically.  相似文献   

9.
利用玛曲国家基本气象观测站1971—2010年的总云量、低云量等观测数据,用线性趋势分析、小波分析等方法对玛曲地区近40 a总云量、低云量的月、季、年际、年代际变化和周期性变化特征进行分析。研究表明,近40 a来,平均总云量距平在-0.1%~0.1%之间,保持了很好的稳定性,平均低云量以4.0%/10 a的速率递增;春、夏、秋季低云量呈现出不同程度的增多趋势,夏季增加趋势非常明显达7.3%/10 a。平均总云量周期变化不明显,平均低云量有明显的6~7 a的周期。玛曲地区在总云量保持稳定的情况下低云量不断增多,夏季低云量的增多趋势非常明显,且积雨云的增多是主要特征,是对玛曲草原气候变化的一种响应机制,反映出在气候变暖的大背景下,玛曲草原对流性天气活动频繁。  相似文献   

10.
In this study, the decomposed fast and slow responses of clouds to an abruptly quadrupled CO2 concentration (approximately 1139 ppmv) in East Asia (EA) are obtained quantitatively by using a general circulation model, BCC–AGCM2.0. Our results show that in the total response, the total cloud cover (TCC), low cloud cover (LCC), and high cloud cover (HCC) all increased north of 40°N and decreased south of 40°N except in the Tibetan Plateau (TP). The mean changes of the TCC, LCC, and HCC in EA were –0.74%, 0.38%, and –0.38% in the total response, respectively; 1.05%, –0.03%, and 1.63% in the fast response, respectively; and –1.79%, 0.41%, and –2.01% in the slow response, respectively. By comparison, we found that changes in cloud cover were dominated by the slow response in most areas in EA due to the changes in atmospheric temperature, circulation, and water vapor supply together. Overall, the changes in the cloud forcing over EA related to the fast and slow responses were opposite to each other, and the final cloud forcing was dominated by the slow response. The mean net cloud forcing (NCF) in the total response over EA was –1.80 W m–2, indicating a cooling effect which partially offset the warming effect caused by the quadrupled CO2. The total responses of NCF in the TP, south China (SC), and northeast China (NE) were –6.74 W m–2, 6.11 W m–2, and –7.49 W m–2, respectively. Thus, the local effects of offsetting or amplifying warming were particularly obvious.  相似文献   

11.
The relationship between satellite-derived low-level cloud motion, surface wind and geostrophic wind vectors is examined using GATE data. In the trades, surface wind speeds can be derived from cloud motion vectors by the linear relation: V = 0.62 V s + 1.9 m s–1 with a mean scatter of ±1.3 m s–1. The correlation coefficient between surface and satellite wind speed is 0.25. Considering baroclinicity, i.e., the influence of the thermal wind, the correlation coefficient does not increase, because of the uncertainty of the thermal wind vectors. The ratios of surface to geostrophic wind speed and surface to satellite wind speed are 0.7 and 0.8, respectively, with a statistical uncertainty of ±0.3. Calculations of the ratio of surface to geostrophic wind speed on the basis of the resistance law yield V/V g = 0.8 ± 0.2, in agreement with experimental results. The mean angle difference between the surface and the satellite wind vectors amounts to - 18 °, taking into account baroclinicity. This value is in good agreement with the mean ageostrophic angle - 25 °.  相似文献   

12.
Aerosol effects on warm (liquid-phase) cumulus cloud systems may have a strong radiative influence via suppression of precipitation in convective systems. A consequence of this suppression of precipitation is increased liquid water available for large-scale stratiform clouds, through detrainment, that in turn affect their precipitation efficiency. The nature of this influence on radiation, however, is dependent on both the treatment of convective condensate and the aerosol distribution. Here, we examine these issues with two climate models—CSIRO and GISS, which treat detrained condensate differently. Aerosol–cloud interactions in warm stratiform and cumulus clouds (via cloud droplet formation and autoconversion) are treated similarly in both models. The influence of aerosol–cumulus cloud interactions on precipitation and radiation are examined via simulations with present-day and pre-industrial aerosol emissions. Sensitivity tests are also conducted to examine changes to climate due to changes in cumulus cloud droplet number (N c); the main connection between aerosols and cumulus cloud microphysics. Results indicate that the CSIRO GCM is quite sensitive to changes in aerosol concentrations such that an increase in aerosols increases N c, cloud cover, total liquid water path (LWP) and reduces total precipitation and net cloud radiative forcings. On the other hand, the radiative fluxes in the GISS GCM appear to have minimal changes despite an increase in aerosols and N c. These differences between the two models—reduced total LWP in the GISS GCM for increased aerosols, opposite to that seen in CSIRO—appear to be more sensitive to the detrainment of convective condensate, rather than to changes in N c. If aerosols suppress convective precipitation as noted in some observationally based studies (but not currently treated in most climate models), the consequence of this change in LWP suggests that: (1) the aerosol indirect effect (calculated as changes to net cloud radiative forcing from anthropogenic aerosols) may be higher than previously calculated or (2) lower than previously calculated. Observational constrains on these results are difficult to obtain and hence, until realistic cumulus-scale updrafts are implemented in models, the logic of detraining non-precipitating condensate at appropriate levels based on updrafts and its effects on radiation, will remain an uncertainty.  相似文献   

13.
We analyse the dependence of the cloud radiative effect (CRE) and cloud amount on mid-tropospheric pressure velocity (ω 500) and sea surface temperature (SST) and point out the shortcomings of using these two proxies separately as means to separate cloud regimes. A bivariate approach is proposed to overcome these shortcomings and it is used to systematically investigate marine cloud properties at different spatial and time scales in the present-day (1985–2001) tropical climate. During the 1997–1998 El Niño, the greatest regional change in CRE and cloud cover coincides with the greatest local change in circulation and SST. In addition, we find that the cooling effect of the stratiform low clouds reduces at the rate of approximately 1 W/m2 per percent of cloudiness reduction in the subsident cold pools of the Pacific ocean. During El Niño, the transition between different cloud regimes gives rise to opposing cloud feedbacks. The sign of the total feedback is controlled by the cloud optical thickness. More generally, we find that the largest part of the cloud response to El Niño, when averaged over the tropical Pacific, is not directly associated with ω 500 and SST changes, so other factors must play a role as well.  相似文献   

14.
Ma  Ning  Yu  Kunlun  Zhang  Yinsheng  Zhai  Jianqing  Zhang  Yongqiang  Zhang  Hongbo 《Climate Dynamics》2020,55(9-10):2867-2887

Accurate understanding of snow cover phenology and its changes is important to hydrological processes and climate system. Having recognized the potential uncertainties in remote sensing snow cover products, we used daily snow depth observations from 514 meteorological stations across China to investigate the spatiotemporal variations in snow cover phenology during 1970–2014. Climatologically, the snow cover onset date (Do) and end date (De) as well as the number of snow cover days (Ds) depended on latitude at most stations outside of the Tibetan Plateau (TP). For the high-elevation stations, which were mainly in the TP, multiple snow-free breaks (SFBs) during the cold season made Ds insensitive to Do and De. Furthermore, the number of SFBs (Db) increased significantly with the rise in elevation, explaining why higher altitudes in TP did not necessarily have greater Ds values despite the earlier Do and later De values. From 1970 to 2014, most stations in China exhibited delayed Do and advanced De due mainly to the increased temperature, but such trends were significant at only 10.5% and 15.4% of the stations, respectively. During the same period, shortened Ds primarily occurred south of ~ 40° N, whereas the opposite ones dominated north of ~ 40° N. Most stations (except those in Hexi Corridor) with significant growth in Ds were characterized by delayed Do and advanced De. Such a phenomenon of “increased snow cover days during shortened cold season” was due to the significant shrinkage in Db values. The spatial pattern of the trends in annual total snow depth overall follows that of Ds, suggesting that the Ds, when takes SFBs into consideration, could be an indicator of variations of snow water resources in China. The trends in Do, De and Ds were not elevation dependent in TP.

  相似文献   

15.
Clouds are believed to reflect temporal climate changes through variations in their amounts, characteristics, and occurrence. In addition, they reflect both weather and climate in a region. In this work, a methodology to determine the local cloud cover (LCC) is proposed using sky images obtained from a ground-based instrument. Three years of sky images from an urban, tropical site were obtained and analyzed through that methodology. Monthly average LCC varied from 3 to 96 %, while seasonal average values were 68 % for summer, 54 % for spring, 46 % for fall, and 23 % for winter. LCC results show a clear seasonal dependence and a fair agreement (r 2 = 0.72) with satellite data, which typically underestimate the cloud cover in relation to LCC. Our analysis also suggests the possibility of a measurable link between LCC and natural events like the El Niño Southern Oscillation.  相似文献   

16.
Summary Cloud parameters and surface radiative fluxes predicted by regional atmospheric models are directly compared with observations for a 10-day period in late summer 1995 characterized by predominantly large-scale synoptic conditions. Observations of total cloud cover and vertical cloud structure are inferred from measurements with a ground-based network of Lidar ceilometers and IR-radiometers and from satellite observations on a 100 kilometer scale. Ground-based observations show that at altitudes below 3 km, implying liquid water clouds, there is a considerable portion of optically non-opaque clouds. Vertical distributions of cloud temperatures simultaneously inferred from the ground-based infrared radiometer network and from satellite can only be reconciled if the occurrence of optically thin cloud structures at mid- and high tropospheric levels is assumed to be frequent. Results of three regional atmospheric models, i.e. the GKSS-REMO, SMHI-HIRLAM, and KNMI-RACMO, are quantitatively compared with the observations. The main finding is that all models predict too much cloud amount at low altitude below 900 hPa, which is then compensated by an underestimation of cloud amount around 800 hPa. This is likely to be related with the finding that all models tend to underestimate the planetary boundary layer height. All models overpredict the high-level cloud amount albeit it is difficult to quantify to what extent due to the frequent presence of optically thin clouds. Whereas reasonably alike in cloud parameters, the models differ considerably in radiative fluxes. One model links a well matching incoming solar radiation to a radiatively transparent atmosphere over a too cool surface, another model underpredicts incoming solar radiation at the surface due to a too strong cloud feedback to radiation, the last model represents all surface radiative fluxes quite well on average, but underestimates the sensitivity of atmospheric transmissivity to cloud amount. Received August 31, 2000 Revised March 15, 2001  相似文献   

17.
ENSO has been known to influence the trends of summer warming over Southern Africa. In this work, we used observational and reanalysis data to analyze the relationship between ENSO and maximum surface air temperature (SATmax) trends during the three epochs created by the ENSO phase shifts around 1977 and 1997 for the period 1960 to 2014. We observed that while ENSO and cloud cover remains the dominant factor controlling SATmax variability, the first two epochs had the predominant La Niña (El Niño)-like events connected to robust positive (negative) trends in cloud fraction. However, this established relationship reversed in the post-1997 La Niña-like dominated epoch which coincided with a falling cloud cover trend. It is established that this deviation from the previously established link within the previous epochs could be due to the post-1998 era in which SATmin was suppressed while SATmax was enhanced. The resulting increase in diurnal temperature range (DTR) could have discouraged the formation of low-level clouds which have relatively more extensive areal coverage and hence allowing more solar energy to reach the surface to boost daytime SATmax. It is noted that these relationships are more pronounced from December to March.  相似文献   

18.
It has been several years since the Greenhouse Gases Observing Satellite (GOSAT) began to observe the distribution of CO2 and CH4 over the globe from space. Results from Thermal and Near-infrared Sensor for Carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) cloud screening are necessary for the retrieval of CO2 and CH4 gas concentrations for GOSAT TANSO-Fourier Transform Spectrometer (FTS) observations. In this study, TANSO-CAI cloud flag data were compared with ground-based cloud data collected by an all-sky imager (ASI) over Beijing from June 2009 to May 2012 to examine the data quality. The results showed that the CAI has an obvious cloudy tendency bias over Beijing, especially in winter. The main reason might be that heavy aerosols in the sky are incorrectly determined as cloudy pixels by the CAI algorithm. Results also showed that the CAI algorithm sometimes neglects some high thin cirrus cloud over this area.  相似文献   

19.
Observations made on 8 and 9 May 1988 by aircraft and two ships in and around the marginal ice zone of the Fram Strait during on-ice air flow under cloudy and cloud-free conditions are presented.The thermodynamic modification of the air mass moving from the open water to the ice over horizontal distances of 100–300 km is only a few tenth of a degree for temperature and a few tenth of a gram per kilogram for specific humidity. This is due to the small temperature differences between sea and ice surfaces. During the day, the ice surface is even warmer than the sea surface. The stably stratified 200–400 m deep boundary layer is often topped by a moisture inversion leading to downward fluxes of sensible as well as latent heat.The radiation and energy balance at the surface are measured as functions of ice cover, cloud cover and sun elevation angle. The net radiationR Nis the dominating term of the energy budget. During the day, the difference ofR Nbetween clear and overcast sky is only a few W/m2 over ice, but 100–200 W/m2 over water. During the night,R Nover ice is more sensitive to cloud cover.The kinematic structure is characterized by strong shears of the longitudinal and the transversal wind component. The profile of the latter one shows an inflection point near the top of the boundary layer. Dynamically-driven roll circulations are numerically separated from the mean flow. The secondary flow patterns have wavelengths of about 1 km and contribute substantially to the total variances and covariances.  相似文献   

20.
“碧利斯”(2006)暴雨过程降水强度和降水效率分析   总被引:1,自引:1,他引:0  
刘圣楠  崔晓鹏 《大气科学》2018,42(1):192-208
利用2006年第4号强热带风暴“碧利斯”登陆过程的高分辨率数值模拟资料,结合三维地面降水诊断方程和降水效率公式,研究了“碧利斯”登陆后引发的局地暴雨过程,重点分析了此次局地暴雨过程的降水强度和降水效率及其与宏微观物理因子的联系。结果表明,降水强度越强,降水效率越高,但两者并非一一对应的线性关系,随着降水强度增大,降水效率增高的趋势逐渐变缓;伴随暴雨系统快速发展,降水强度和降水效率均显著增强,而主要降水源/汇项的时间变化要复杂得多;暴雨发生前时段与发生时段降水物理过程存在显著差异,发生前,较明显的水汽辐合显著加湿局地大气,并通过微物理转化支持降水云系发展,液相水凝物辐合对降水云系快速发展贡献明显,固相水凝物辐合贡献不显著,较强的“云滴与雨滴碰并(Pracw)”微物理过程同液相水凝物明显辐合可能有直接关系,“霰融化造成雨滴增长(Pgmlt)”仅为Pracw的27%,发生时段,进一步明显加强的水汽辐合依旧是主要降水来源,而汇项发生了明显变化,同时,微物理转化过程与发生前比更活跃,尤其是Pracw和Pgmlt,其中,Pgmlt增强更明显,其值接近Pracw的50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号