首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
利用南京及其附近地区地面常规气象要素、颗粒物PM_(2.5)质量浓度逐时观测资料,以及CALIPSO资料、NCEP再分析资料、MODIS气溶胶光学厚度、南京站探空廓线等资料,结合天气学诊断分析和HYSPLIT后向轨迹模拟等方法,对2016年12月4—9日南京地区的一次雾霾天气进行分析。结果表明:此次雾霾天气过程具有区域性特征,南京上空气溶胶以沙尘型、污染沙尘型和污染大陆型为主,污染物主要来自西北方向的输送和本地的人为污染。地面弱高压均压场与高空稳定的天气形势叠加是此次雾霾天气过程的环流背景,同时南京上空盛行辐散下沉气流,下沉增温有利于逆温层的维持,使雾霾天气得以发展;偏北风携带的冷空气南下,正涡度平流控制南京上空,有利于雾霾的减弱消散,同时温度平流也影响了水汽凝结和相对湿度状况,进而使能见度发生相应变化。  相似文献   

2.
利用多源观测资料综合分析了2015年11月沈阳地区一次PM2.5 重污染天气的气象条件、垂直风场演变、大气边界层特征以及污染物的来源。结果表明:本次重污染过程中,沈阳市区PM2.5浓度长达81h超过250μg · m^-3 ,其中峰值浓度达到1287μg · m^-3 ,重污染期间PM2.5 /PM10 的比例最高为90%。受地面倒槽和黄淮气旋影响,近地面层持续存在的逆温层、高相对湿度和弱偏北风为颗粒物吸湿增长和长时间聚集提供有利的天气条件。风廓线雷达风场资料显示在重污染期间,近地面层存在弱风速区、凌乱风场和弱下沉气流。利用风廓线雷达资料计算了边界层通风量(Ventilation Index,VI)和局地环流指数(Recirculation,R),边界层通风量VI和PM2.5 存在明显的负相关,非污染日VI是重污染日的2倍,局地环流指数R在重污染天气前大于0.9,而在污染期间部分空间R小于0.8。通过后向轨迹模式和火点监测资料分析发现,沈阳上空300m高度气团来自于生物质燃烧区域,而且沈阳地区NO2和CO浓度的变化与PM2.5一致,说明本次重污染过程也可能和生物质燃烧有关。  相似文献   

3.
孙艺  林倩 《气象科技》2020,48(2):292-298
2016年12月30日至2017年1月8日,山东出现了以PM2.5为首要污染物、持续几天、大部地区重度以上污染的霾天气。基于多种实况观测资料和ERA Interim再分析资料,分析了此次过程天气背景和边界层特征等。结果发现:高空平直纬向环流、地面弱气压场、典型的静稳天气,有利于霾维持较长时间。此次过程期间有3次冷空气影响,冷空气的强度影响霾的变化,弱冷空气难以破坏近地层逆温结构,并会从上游向下输送污染物,有利于污染物的累积;较强冷空气带来较强的垂直运动,破坏了静稳天气形势,有利于污染物的扩散及清除。此次过程稳定层结形势下,边界层高度是一个对霾有指示意义的物理量。边界层高度和AQI的变化呈滞后负相关关系,边界层高度降低之后对应AQI指数升高。逆温层长时间的存在是此次霾持续的重要条件,另外由于地理原因东南风增湿和逆温层顶高度降低都会导致污染物浓度增大,使霾加重。  相似文献   

4.
根据单站雾霾日数和区域雾霾过程的确定方法,挑选2014年12月16日至2015年1月27日四川盆地典型雾霾过程,结合空气质量指数(AQI)、污染物质量浓度、气象要素特征和大气环流背景,研究此次持续雾霾天气的产生、演变及转化特征。结果表明:(1)此次雾霾过程表现出强度强、持续时间长、发生范围广的显著特点。(2)AQI和污染物质量浓度的变化与雾霾天气过程高度一致,本次雾霾过程的主要污染物为PM_(2.5),其次是PM_(10)。(3)此次过程出现了不同强度的污染物积累、到达峰值及急速减弱阶段,雾霾天气过程的强弱与天气形势、边界层垂直结构密切相关,与历史同期相比,这次超长雾霾过程盆地平均气温偏高1.24℃,降水偏少34.77%,日照时数偏多10.33 h,相对湿度偏低2.67%,风速基本持平略偏大,稳定的大气环流形势为雾霾天气和严重污染提供了持续稳定的大气环境场;强逆温层结、边界层的下沉运动、地面弱风场中的辐合均使水汽和污染物存留在近地层不易向高空扩散,造成雾霾天气持续。  相似文献   

5.
朱丽  张庆池  王琴  刘俊 《气象科技》2022,50(2):243-253
2020年1月12—15日江苏泰州发生了一次较强的雾〖CD*2〗霾过程,利用常规气象观测资料、NCEP再分析资料(1°×1°)及空气质量资料等,对此次过程的演变特征、成因、气团后向轨迹特征进行了分析,结果表明:此次过程具有日变化特征,霾期间对应的PM2.5和PM10浓度、空气质量指数相较于雾略高,这与大雾造成的湿沉降有关。此次东路冷空气对泰州影响较弱,前期易造成污染物在本地聚集。夜间至清晨相对湿度90%以上,风小,弱的垂直交换为雾的形成提供了较好的热、动力条件。白天相对湿度减小至80%,风速增至2 m〖DK〗·s-1,此时大气污染物浓度较高,雾转换为霾。13日900 hPa以上暖平流增强,边界层内逆温和90%以上相对湿度的存在,使得雾和霾均加强至最强。此外,分析气团的后向轨迹特征发现,霾天气期间500 m以下气团稳定少动。14日500 m以上清洁气团向低空补充,利于污染物的扩散,霾减轻。15日傍晚,风力增强并伴有降水出现,雾〖CD*2〗霾过程结束。  相似文献   

6.
针对2020年1月5—17日乌鲁木齐出现的重污染天气,利用乌鲁木齐的探空站资料和地面常规气象数据计算了最大混合层高度、平均风速、逆温特性、边界层通风量、能见度、相对湿度等,对最大混合层高度、能见度、相对湿度与PM2.5质量浓度进行了相关性分析,并利用Hysplit后向气团轨迹模式分析污染形成源。结果表明:此次重污染天气过程大气层结较为稳定,主要表现为逆温层厚(平均577 m)、逆温强度大(平均1.7℃/100 m)、最大混合层高度低(平均400 m);边界层通风量对局地空气质量影响显著;PM2.5质量浓度与相对湿度呈弱的正相关,与能见度呈指数相关;Hysplit后向气团轨迹模式分析得出此次污染过程以局地排放为主要形成源。  相似文献   

7.
2018年11月23日至12月3日,华北平原出现了一次较长时间的雾霾天气。利用常规气象观测资料、NCEP/NCAR再分析资料和污染物浓度资料,以河南省濮阳市为例,对此过程的大尺度环流背景场、边界层内气象要素特征、动力因素和污染状况等进行综合分析,分3个阶段探讨此过程形成的原因和维持机制。结果表明:(1)雾霾发生在高空纬向环流背景下,华北处于高压脊前西北气流中,频繁受下滑短波槽影响。(2)冷空气活动偏弱,中低层维持暖脊控制,使边界层内出现较强逆温,制约低层水汽和污染物的垂直扩散。(3)地面处于均压场或锋后弱冷高压控制,弱风条件不利于污染物的水平扩散。(4)前期大雾形成时,强逆温层在900 hPa以下的贴地高度,能见度很低,污染严重;中期霾严重时,较强逆温层上移至900—850 hPa,并出现双层逆温,能见度虽较好,污染仍然严重;后期的雾霾主要由高湿度环境中污染物聚集吸湿增长造成。(5)中低空弱的下沉气流及近地面辐合风场是雾霾天气得以发展维持的动力因子。  相似文献   

8.
关中一次重污染天气过程气象特征分析   总被引:1,自引:0,他引:1  
利用常规观测资料、风廓线资料、PM2.5质量浓度资料及HYSPLIT-4模式,对2016年12月31日—2017年1月6日陕西关中盆地一次霾重污染天气过程的气象特征进行了分析。结果表明:此次过程发生在500hPa纬向平直气流、地面东高西低的典型环流形势下,稳定的大气层结和边界层逆温强烈抑制了污染物的垂直扩散;边界层风场存在500m之下的偏南风、500~1 000m偏北风和1~1.5km的纬向小风速区的三层结构特征,弱偏南风的水汽输送、弱对流不稳定和中高层的弱纬向风的阻挡,使得污染物在边界层内充分混合并堆积。污染物质量浓度与低层风关系密切,当低层为弱偏南风时,相对湿度逐渐上升,PM2.5质量浓度升高;反之,当气流转为偏北风时,相对湿度明显下降,PM2.5质量浓度降低。输送至西安的气团路径共有西北、偏南及本地路径三类,西北气流携带的大颗粒污染物、偏南气流的增湿效应及污染物的输送和本地污染源的叠加,共同造成了盆地的重污染天气的发生,其中直行偏南路径占比最高为38%,本地路径次之,占比25%。  相似文献   

9.
北京冬季雾霾事件的气象特征分析   总被引:4,自引:3,他引:1  
利用观测的气象要素和细颗粒物(即PM2.5)浓度资料,并结合中尺度数值天气模式WRF(Weather Research and Forecasting Model),对2013年1月北京地区雾霾污染期间天气条件和边界层气象特征进行了分析。模拟与观测对比表明,WRF模式可以较好地反映北京—天津—河北地区地面和高空主要气象要素的时空分布。对1月10~14日、27~31日两次重雾霾天气的分析表明,雾霾的形成是高浓度的大气颗粒物和特殊的气象条件共同作用的结果。小风或静风、稳定的大气层结,使大气扩散能力减弱,造成污染物堆积,偏南气流将周边污染物和水汽输送到北京,不仅增加了污染物浓度,而且有利于气溶胶吸湿增长,消光增强,使能见度下降,进而形成雾霾。  相似文献   

10.
2015年1月22—26日湖州地区出现了一次严重的持续性雾霾天气过程,严重影响了该地区人们的生活健康。借助空气质量AQI数据、地面气象要素、探空站资料及卫星遥感数据分析了本次重污染过程的污染特征及其成因。结果表明:在弱高压控制下,地面风速较小,天气条件静稳,不利于污染物扩散,容易造成持续性重污染;中低层形成的逆温结构,使得这次雾霾天气过程能够维持;来自北方的污染物输入使本地空气质量状况更加恶劣,同时卫星遥感数据显示此次污染为区域性污染;大气混合层高度的变化对雾霾的发展变化有较好的指示作用,当混合层高度较低时,污染物在低层容易积聚,更容易造成较强的污染,可为雾霾的预报提供参考依据。  相似文献   

11.
2014年深圳市东北部吓陂监测站PM_(2.5)的年均质量浓度为47.0μg/m~3,在全市处于较高污染状态,并呈现出冬季秋季春季夏季的季节变化特征。气象要素的分析表明,2014年吓陂监测站夏季时降水较多、湿度最大、风速最大、气温最高、边界层高度最高,最有利于污染物的扩散和清除;冬季时降水最少、湿度最小、风速最小、气温最低、边界层高度最低,最不利于污染物的扩散和清除。后向轨迹聚类分析表明,吓陂监测站的后向轨迹主要分为5类,其中来自北方内陆地区的气团污染最重,来自南海地区的气团污染最轻。进一步利用潜在源贡献因子进行源区识别分析,结果表明:2014年吓陂监测站的PM_(2.5)主要来源于本地源的排放及周边地区(尤其是广东东北部地区)的短距离输送,此外江西等内陆地区的长距离传输在一定程度上也可能导致吓陂监测站PM_(2.5)质量浓度的升高。  相似文献   

12.
基于常规气象观测资料和PM2.5浓度资料,分析了2019年1月10—14日天津市东丽区出现的一次持续性雾霾天气特征及其成因。结果表明:此次雾霾天气具有明显的阶段性特征,高空平直西风环流、中层暖脊和地面弱气压场为此次雾霾天气出现提供了有利的天气形势。轻雾和霾阶段,能见度变化更易受到相对湿度的影响;而雾阶段,能见度变化更易受到风速的影响。PM2.5浓度与地面气象因子关系密切,与能见度、风速负相关,与相对湿度正相关。当其他气象条件稳定,且周边地区污染物浓度较高时,近地面风向转变,对本地区雾霾的出现起到关键性作用。  相似文献   

13.
朱云凤  刘杰  白雪  王桂臣 《气象科技》2016,44(5):800-804
利用MICAPS资料、NCEP再分析资料和环境监测站大气成分监测资料,分析2015年3月29日连云港地区一次浮尘及重污染天气过程,结果表明:由于上游地区出现沙尘天气后,空气中大量沙尘粒子随着高空西北气流携带向东南输送,影响连云港,从而形成浮尘天气;高空有西风急流带,400hPa下沉运动加强,高空动量下传是形成浮尘天气的动力条件;连云港处于弱气压场中,大气层结稳定,空气干燥,风力较小,不利于沙尘粒子和污染物扩散;由浮尘的质点后向轨迹模拟得知,沙源来自蒙古国东部地区,与高空形势分析结果一致。  相似文献   

14.
利用气象观测资料和PM2.5质量浓度资料,统计分析宝鸡市2013年冬季重度雾霾污染日时空特征,探讨雾霾污染日各气象要素的特征。分析发现:12013年12月—2014年2月宝鸡出现重度雾霾污染日28d,为近5a来最多。2重度雾霾污染天气过程多持续4~8d;污染严重时次出现在19—24时,具有显著日变化。3宝鸡市东部污染重于西部,弱东风利于重度雾霾污染出现(加剧),转为西风时污染减弱。4重度雾霾污染天气的主要成因包括,有利的天气形势(地面关中处于高压底部或后部)维持,大气混合层高度低,相对湿度较大(70%左右),风速较小(2m/s),连续无降水日长。5重度雾霾污染主要为本地污染物聚集所致。  相似文献   

15.
利用后向轨迹模式研究TRACE-P期间香港大气污染物的来源   总被引:34,自引:1,他引:33  
利用Hysplit4.7轨迹模式和2001年3月NCEP再分析气象资料,计算2001年3月TRACE-P期间抵达香港地区的后向气流轨迹,并分析香港地区大气输送特征。对轨迹进行聚类分析后得到到达香港的6类典型气团。结合香港鹤咀测站所测量的大气污染物的浓度,进一步分析不同来源气团的化学特征。抵达香港的气流轨迹结果表明来自大陆的气团占47.5%,局地输送性气团占34.6%,海洋性气团占18.7%。鹤咀测站的污染性气体O3 、SO2、CO在大陆气团影响下的平均浓度分别为31.1、3.0、486.1 μg/m3;在海洋性气团影响下分别为20.0、1.0、319.4 μg/m3;在局地输送气团影响下分别为20.0、1.2、308.0 μg/m3。  相似文献   

16.
花丛  刘超  张恒德 《气象科技》2017,45(5):870-875
利用L波段风廓线雷达资料,对北京2014年10月7-10日持续性雾霾天气过程的机理进行了研究,结果表明:低空偏南气流对雾霾的维持和发展有明显影响,当偏南风速大于8m/s时对大气扩散能力有一定改善作用,会抑制PM2.5浓度的持续增加;中低空弱冷空气扰动的下传高度决定了对污染物浓度的影响,当扰动不能到达近地层时,对污染物浓度影响较为微弱;雾霾维持阶段,近地层信噪比强度一般为10~35dB,可反映雾霾层的厚度;折射率结构常数可用于判断大气边界层高度变化情况,在热力湍流和污染物粒子散射作用下,白天边界层折射率结构常数可比夜间增大约3个量级。  相似文献   

17.
“13·12”西安重污染气象条件及影响因素   总被引:6,自引:4,他引:2       下载免费PDF全文
使用高分辨监测资料对2013年12月18—25日西安严重污染天气气象条件及影响因素进行分析。结果表明:严重污染期间,亚洲大陆中高纬度500 hPa呈一槽一脊经向环流型,陕西处于地面冷高压南部均压场控制下。空气质量转好时,高空锋区明显增强,地面冷锋快速东移、南压,边界层高度增大,近地层集聚污染物显著抬升。严重污染与非污染时段气象条件差异明显。除接地逆温外,近地层不同高度存在悬浮逆温,相对湿度呈湿-干-湿垂直分布,温湿条件有利于污染加强。严重污染属于以湿霾为主的重度霾天气,日平均能见度小于1.5 km,边界层高度小于0.7 km,郊区湿霾每日持续时间平均比市区长约5 h。严重污染期间,细颗粒物浓度远高于粗颗粒物,随时间增加趋势明显。颗粒物平均浓度在午后出现峰值,可能与边界层高度偏低、关中盆地地形因素密切相关,本地地面风场日变化对污染有加重效应。  相似文献   

18.
利用青岛市环境监测中心站环境监测资料、青岛市气象常规观测资料、美国国家环境预报中心(NCEP)再分析资料,对青岛地区2016年12月18—21日的一次雾霾重污染天气过程进行分析。结果表明:污染期间,亚欧大陆中高纬度地区500hPa呈两槽一脊的环流形式,青岛处于弱槽系统控制下,空气质量好转时,高空锋区明显增强,西北风加大,地面冷锋快速东移;此次雾霾重污染天气过程空气中近地面相对湿度一直维持较高,重污染期间小于2.6m·s~(-1)的地面风速对污染物扩散没有明显作用;污染物的浓度增加、持续阶段与气象要素能见度、风速、混合层厚度呈负相关性,与相对湿度呈正相关性,与温度的相关性较低;污染过程中青岛市区24h的输入污染源主要来自半岛北部地区,主要污染物为PM_(2.5)颗粒。  相似文献   

19.
京津冀地区一次严重霾天气过程及其影响因素分析   总被引:1,自引:0,他引:1  
利用大气污染监测资料、常规气象观测资料及NCEP再分析资料,对2013年1月9—17日京津冀地区一次严重霾天气过程的特征及其与气象条件的关系进行分析。结果表明:此次霾天气过程京津冀地区6个城市(北京、天津、石家庄、保定、邯郸、唐山)的PM10、SO2和NO2污染物日平均浓度均较高,变化趋势基本相同,其中PM10日平均浓度的变化幅度最大,峰值出现在11—13日之间;石家庄、保定和邯郸市的污染最严重,PM10日平均浓度最大值分别为0.94 mg·m-3、0.95 mg·m-3和0.82 mg·m-3。SO2和NO2日平均浓度的变化幅度较小,但浓度值均较大,基本为0.10 mg·m-3以上。影响此次霾天气过程的大范围环流形势为纬向型,存在较强的逆温层,弱下沉运动使近地层大气处于静稳状态,不利于污染物扩散,而近地面较小的风速和低层相对湿度小于90%为霾的形成提供了有利条件。另外,后向轨迹分析表明,此次污染过程京津冀地区的气团主要来自新疆地区,路径主要是从西北气流转为西南气流,携带南方的湿空气和污染物向京津冀地区输送。  相似文献   

20.
针对2016年12月29日—2017年1月6日山西省太原市内发生的一次重污染天气过程,通过分析常规天气条件,SO2、PM2.5和PM10的排放清单以及后向轨迹模式,探讨本次重污染事件的成因。结果表明:本次污染事件持续时间长,重度染污持续将近5 d,多种污染物浓度严重超标,细粒子是污染过程的主要贡献;太原市处于冷空气较弱和水汽条件较好的大尺度大气环流形势下,为冷高压持续稳定,近地面风速小、风力弱地面形势下,形成了大范围、长时间的静稳天气;在污染期间太原地区主要受到来自西北和西部共四种气流输送类型的控制,其中来自西北的气流输送轨迹对应的污染物浓度明显小于其他三条轨迹对应的污染物浓度,输送轨迹的输送高度可能是造成轨迹对应污染物浓度之间差异的一个原因,结合污染物排放源分布发现这次污染事件的形成受本地源和长/近距离输送的共同影响,其中本地源的贡献更为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号