首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用2017-2019年空气质量监测数据,采用HYSPLIT后向轨迹模式、聚类分析、潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),对运城市秋冬季大气PM2.5传输路径、对应重污染的天气形势和潜在源区进行分析。结果表明:(1)运城近地层盛行偏东风时污染频率高,弱的偏东风和西南风时,污染物浓度较大。秋冬季PM2.5后向轨迹西北方向最多达53.53%,偏东方向最少为11.25%,偏西方向和西南方向介于两者之间,分别为16.61%和12.06%。(2)不同轨迹对应天气形势不同,西北和偏西轨迹下,500 hPa高度场上为两槽一脊或偏西气流,700~850 hPa受脊前西北气流影响,地面为高压前底部型或均压场型;西南轨迹下,500 hPa高度场上为偏西气流,700~850 hPa运城处于槽前西南气流,地面气压场为高压前底部(底部)或均压场。(3)运城PM2.5潜在源区主要位于陕西南部、四川东部和新疆东南、甘肃的东南部等地区,说明影响运城秋冬季PM2.5的浓度除了来自汾渭平原西南部的颗粒物区域输送,来自西北方向新疆、甘肃的远距离颗粒物传输也是重要来源。  相似文献   

2.
唐杰  杨云芸  李蔚  王晓雷 《气象科技》2021,49(5):762-769
2019年12月12—17日,湖南省出现了一次首要污染物为PM2.5的持续时间长、影响范围大的重污染过程。本文综合应用湖南省环境监测站发布的AQI、逐小时主要污染物浓度和各类气象观测数据资料等,选取长沙为代表站,深入探究本次重污染天气过程气象条件、边界层演变特征等,并探讨污染物的来源和外来源气团移动路径。结果表明:此过程为输入叠加本地的复合型污染,污染积累阶段的弱冷空气打通了污染传输通道,有利于北方污染物南下,污染爆发阶段主要是本地静稳天气叠加上游外来源造成,污染清除阶段湖南地区地面主要是受较强冷空气影响,风力加大,污染物迅速稀释扩散,近地面逆温的存在是此次污染持续并爆发的重要条件。后向轨迹表明,此次重污染天气过程是外来源和本地源共同叠加的结果。  相似文献   

3.
关中一次重污染天气过程气象特征分析   总被引:1,自引:0,他引:1  
利用常规观测资料、风廓线资料、PM2.5质量浓度资料及HYSPLIT-4模式,对2016年12月31日—2017年1月6日陕西关中盆地一次霾重污染天气过程的气象特征进行了分析。结果表明:此次过程发生在500hPa纬向平直气流、地面东高西低的典型环流形势下,稳定的大气层结和边界层逆温强烈抑制了污染物的垂直扩散;边界层风场存在500m之下的偏南风、500~1 000m偏北风和1~1.5km的纬向小风速区的三层结构特征,弱偏南风的水汽输送、弱对流不稳定和中高层的弱纬向风的阻挡,使得污染物在边界层内充分混合并堆积。污染物质量浓度与低层风关系密切,当低层为弱偏南风时,相对湿度逐渐上升,PM2.5质量浓度升高;反之,当气流转为偏北风时,相对湿度明显下降,PM2.5质量浓度降低。输送至西安的气团路径共有西北、偏南及本地路径三类,西北气流携带的大颗粒污染物、偏南气流的增湿效应及污染物的输送和本地污染源的叠加,共同造成了盆地的重污染天气的发生,其中直行偏南路径占比最高为38%,本地路径次之,占比25%。  相似文献   

4.
利用TrajStat软件和GDAS全球同化气象数据,对江西省赣江新区2011—2020年四季72 h气团后向轨迹进行聚类分析,并结合PM2.5和O3逐小时浓度数据,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)分析了2016年12月2—10日一次污染天气过程中大气污染物输送对赣江新区上空污染物浓度的贡献。结果表明,赣江新区2011—2020年四季气团后向轨迹中占比最大的均为短支气流,其中春季的短支气流来源于东侧,其他季节均来源于东北方向的安徽省,夏季和冬季的长支气流与季风的季节性变化一致。在2016年12月2—10日的污染天气过程中,赣江新区的PM2.5潜在源区主要分布于江西省北部、湖北省东南部,O3潜在源区主要分布于江西省北部、湖北省南部和湖南省东北小部分地区;同时天气形势显示,赣江新区处在槽后脊前,湖北省东南部存在偏强西北风,为大气污染物向赣江新区的输送创造了条件。  相似文献   

5.
武威  顾佳佳  鲍玉辉 《湖北气象》2020,39(3):259-268
利用常规气象资料、颗粒物观测数据、NCEP 1°×1°分析资料、GDAS 1°×1°数据、激光雷达资料等,对2018年11月下旬河南漯河一次连续重污染天气过程成因与污染物传输特征进行了分析。结果表明:(1)本次污染与天气形势关系密切,前期受静稳纬向环流和地面均压场影响,有利污染积累;中期高空槽与地面变性高压引导弱冷空气东移南下,产生滞留效应,污染物迅速增加;后期因低层东路冷空气扩散与静稳形势恢复,污染继续积累增长,形成连续性重污染。(2)PM_(2.5)造成重污染时因辐射逆温持续稳定,导致污染加剧;PM_(10)重污染时因逆温层减弱消失,有利污染物输送沉降;混合重污染时因近地层湍流混合加强形成逆温,污染持续发展。(3)本次重污染天气主要有5条传输路径,西南路径和偏东路径污染比例较高,其轨迹短,高度在900 hPa以下,对PM_(2.5)近距离输送作用明显;西北路径和偏北路轨迹长,起始高度在700—600 hPa之间,高空中远距离输送以PM_(10)为主。(4)受静稳条件和近地层高湿影响,高消光带维持在600 m以下,较低边界层抑制垂直扩散,导致污染细颗粒物与沙尘积累并长时间共存。(5)本次重污染是本地污染累积和高空外源污染输送共同影响。除漯河本地污染贡献较高外,高潜在源区主要集中河南西南部、东北部以及与山东交界处,这也是本次持续性污染发展的重要原因。(6)重污染时地面偏北风占主导,其他方向风速较小,有利形成污染辐合以及污染物二次转化并加剧污染。  相似文献   

6.
选取2016年12月17—22日青岛一次典型重污染天气,利用大气污染物监测结果、地面气象要素观测资料和欧洲中期天气预报中心(ECMWF)ERA5再分析数据对此次过程中大气污染物及气象场的变化特征进行分析。观测分析表明此次污染过程持续时间长达5 d以上,其中19—21日为重污染天气(PM 2.5 日均质量浓度ρ>150 μg·m-3)。根据气象场和PM2.5质量浓度变化特征,此次污染过程可分为3个阶段:17日02时—19日08时为青岛污染物累积阶段,研究区受西南风控制,PM2.5质量浓度逐渐上升,700 hPa等压面上高空槽的维持及槽前持续的南风、西南风有利于污染物累积,同时近地面相对湿度增加,是此次持续性重污染天气形成的重要条件;19日09时—20日20时为青岛污染维持加剧阶段,相对湿度大、风速很小,污染物扩散条件差,PM2.5质量浓度最高;20日21时—22日08时为青岛污染消散阶段,青岛对流层中下层及地面风速均增大并产生弱降水,有利于污染物扩散稀释和湿清除,PM2.5质量浓度逐渐降低。WRF-Chem数值模式能够较好地模拟出主要气象要素和青岛PM2.5 质量浓度的变化特征,模拟结果表明山东省内污染物排放贡献了青岛PM2.5的49.5%;污染物跨省输送对此次污染事件也有重要贡献,其中来自研究区以南的安徽和江苏的排放对青岛PM2.5的贡献率可达25.5%。  相似文献   

7.
祁海霞  崔春光  赵天良  白永清  刘琳 《气象》2019,45(8):1113-1122
为了研究湖北省两种污染来源的重污染天气特征及其形成机制,采用WRF/Chem零排放情景模拟方案,将2015年冬季湖北省PM2.5模拟浓度分离为外源传输量和本地累积量,基于对数值模拟结果的统计分析,确定了湖北省污染传输通道和外源传输贡献率,研究了敏感区天气系统对两种污染来源的影响作用。结果表明,外源污染物输送在湖北省内有两条主要通道,一是由南襄盆地夹道直接输送汇入江汉平原,二是沿京广线从信阳到随州、孝感、武汉至江汉平原。湖北长距离跨区域传输的潜在污染源区为河南、安徽、江苏、山东等地。2015年冬季湖北省17个地(市)平均外源贡献率为42%,而对于重污染过程,平均外源贡献率高达66%,外来源输送对湖北重污染过程贡献非常显著。对外源传输型,我国东南地区为主要敏感区,气压(气温)变化与PM2.5输送显著负(正)相关,对维持南、北两支矢量带(PM2.5输送与风场相关),推动偏南和偏东气流起到积极作用。此外,伊朗高原天气系统通过上下游效应对东亚地区大气环流起到一定影响,从而也间接影响了区域污染输送。对本地累积型,冬季风环流系统为主要影响天气系统,在弱的冬季风环流形势下,蒙古高压系统偏弱、西太平洋地区海平面气压值偏高,对应湖北本地累积污染总量贡献大。  相似文献   

8.
2014—2015年上海地区冬夏季大气污染特征及其污染源分析   总被引:2,自引:2,他引:0  
刘超  花丛  康志明 《气象》2017,43(7):823-830
利用上海地区冬、夏季空气质量数据和常规地面观测数据,分析了2014—2015年冬、夏两季大气污染特征,并通过聚类分析法和后向轨迹模式对污染物输送路径进行统计分析。结果显示:上海市冬、夏两季空气质量均以优良为主,首要污染物分别以PM2.5和O3;来自夏季的西北输送路径对应PM2.5和O3浓度最高,分别为62.8和130.2 μg·m-3,来自冬季的西北和西南方向的输送路径对应PM2.5浓度较高;进而基于潜在源区贡献和污染源排放强度等要素建立了传输指数。总体而言,江苏中南部、浙江中北部以及安徽中南部等地对上海地区夏季空气质量影响较为显著,而冬季周边区域的传输指数范围有所扩大,主要包括河北南部、河南中东部、山东、安徽、湖北中东部、江苏以及浙江中北部等地。  相似文献   

9.
利用多源观测资料综合分析了2015年11月沈阳地区一次PM2.5 重污染天气的气象条件、垂直风场演变、大气边界层特征以及污染物的来源。结果表明:本次重污染过程中,沈阳市区PM2.5浓度长达81h超过250μg · m^-3 ,其中峰值浓度达到1287μg · m^-3 ,重污染期间PM2.5 /PM10 的比例最高为90%。受地面倒槽和黄淮气旋影响,近地面层持续存在的逆温层、高相对湿度和弱偏北风为颗粒物吸湿增长和长时间聚集提供有利的天气条件。风廓线雷达风场资料显示在重污染期间,近地面层存在弱风速区、凌乱风场和弱下沉气流。利用风廓线雷达资料计算了边界层通风量(Ventilation Index,VI)和局地环流指数(Recirculation,R),边界层通风量VI和PM2.5 存在明显的负相关,非污染日VI是重污染日的2倍,局地环流指数R在重污染天气前大于0.9,而在污染期间部分空间R小于0.8。通过后向轨迹模式和火点监测资料分析发现,沈阳上空300m高度气团来自于生物质燃烧区域,而且沈阳地区NO2和CO浓度的变化与PM2.5一致,说明本次重污染过程也可能和生物质燃烧有关。  相似文献   

10.
2014年2月19—27日,北京出现了重度污染及以上水平的霾天气,严重危害着人们的身体健康。以北京该段持续污染过程为研究对象,基于同期气象数据与PM2.5 观测数据,利用SPSS统计软件分析了PM2.5浓度与气象因子间的相关性,探究区域周边城市PM2.5 污染变化特征及其与地面天气形势之间的关系。研究结果表明,在一定的气象条件下,PM2.5 浓度与风速、相对湿度分别呈显著的负相关、正相关,与气压呈负相关,与气温无显著相关关系。同时,比较该时段北京市与周边区域7个城市的PM2.5 浓度变化趋势及后向轨迹分析,发现北京市与周边城市在相似的气象背景条件下,污染过程具有区域性特征。华北地区处于地面高压均压场控制时,地面风速小,逆温层明显,大气层结稳定,区域扩散条件差,弱偏南气流主导时间长,受局地源积累和区域输送的影响,污染物浓度累积上升,可形成持续霾天气。  相似文献   

11.
大气污染除了受本地污染源的影响外,外来污染物的输送也是重要的影响因子之一。本文基于拉格朗日混合单粒子轨迹模型(HYSPLIT)分析了河南省重污染过程空气输送通道的特征,并结合地面风场观测资料和NCEP再分析资料对污染发生时的气象背景场进行了探讨。结果表明:在1986—2015年冬季气候平均态下,河南省盛行西北气流,空气输送主要来自西北欧亚大陆,经河北、陕西和山西等地区进入河南地区。2015年河南省17次重污染过程主要空气污染输送分别来自南方(32%)、偏北方(24%)和偏东方(27%),3条通道在输送过程中高度基本维持在900 h Pa以下;重污染过后西北风加强,南风消失,污染物迅速扩散。由2015年12月5—13日河南地区重污染过程的模拟表明,偏北空气输送通道所占比例虽然不是最高的,但经过污染物浓度高值区携带的污染物较多,同时由于风速减弱,不利于污染物扩散。气象观测资料进一步证明河南省重污染过程发生时处于静稳天气状态,同时东南风带来了较多的水汽输送,相对湿度偏高不利于污染扩散。  相似文献   

12.
花丛  张恒德  张碧辉 《气象》2016,42(3):314-321
本文结合地面常规观测资料和空气质量数据,利用聚类分析方法对2013—2014年冬半年北京地区的气象传输轨迹特征进行了统计分析,并通过潜在源区贡献法(PSCF)分析了污染物的潜在源区。结果表明:影响北京的气团主要来自西南、偏东和西北三条路径,其中西南和偏东路径中重污染天气的出现概率分别为56.58%和43.80%,为典型的污染物传输路径。潜在源区分析发现,高PSCF值主要对应西南和偏东轨迹气团所影响的山东西部、河北中南部及天津等地,其形成与下垫面排放及气团移动速度有关。在此基础上,结合PM_(2.5)排放源强度构建传输气象指数,经检验发现与PM_(2.5)浓度的生消变化有较好的一致性,且有约6 h的预报提前量。将传输指数与天气分析相结合,有助于加深对重污染天气成因的理解,并在预报评估中发挥参考作用。  相似文献   

13.
利用地面细颗粒物(PM2.5)浓度和气象常规观测资料、地基 AERONET观测资料、GFED生物质燃烧排放清单和大气化学—天气耦合模式WRF-Chem,模拟研究了华北地区2014年10月气象要素和大气污染物的时空演变,重点关注北京10月7~11日的一次重霾事件及其天气形势、边界层气象特征、输送路径、PM2.5及其化学成分浓度变化等特征,以及秸秆燃烧对华北和北京地区细颗粒物浓度和地面短波辐射的影响。与观测资料的对比结果显示,模式可以很好地模拟北京地区地面气象要素和PM2.5质量浓度,考虑秸秆燃烧排放源可以明显改进北京PM2.5浓度模拟的准确性,但在重度污染情况下,模式总体上低估气溶胶光学厚度和高估地面短波辐射。10月7~11日北京地区重霾事件主要是不利气象条件下人为污染物累积和区域输送造成,也受到华北地区南部秸秆燃烧的影响。河南北部、河北南部和山东西部大面积秸秆燃烧释放的气态污染物和颗粒物在南风的作用下输送至北京,秸秆燃烧对北京地区地面PM2.5、有机碳(OC)、硝酸盐、铵盐、硫酸盐和黑碳(BC)的平均贡献率分别为24.6%、36.8%、23.2%、22.6%、7.1%和19.8%,秸秆燃烧产生的气溶胶可以导致北京地面平均短波辐射最大减小超过20 W m-2,约占总气溶胶导致地表短波辐射变化的24%。  相似文献   

14.
两次秸秆焚烧污染过程的气象条件对比分析   总被引:1,自引:1,他引:0  
毛宇清  李聪  沈澄  刘冬晴  王永平 《气象》2013,39(11):1473-1480
利用常规气象资料、卫星遥感监测资料、污染物浓度资料和NECP/NCAR再分析资料,结合气流后向轨迹模拟,对比分析了南京地区2011年6月10和13日两次由于秸秆焚烧而引起的严重空气污染事件的天气条件、大气边界层特征以及污染物的来源和输送路径等。结果表明:两次污染过程中PM2.5浓度均出现陡升陡降,由秸秆焚烧而产生的细粒子贡献显著。13日高污染的持续时间和强度都高于10日,10日的高低空形势配置和物理量场有利于降水的产生,对污染物有一定的冲刷作用,而13日的高低空形势配置和物理量场则有利于污染物在边界层堆积。两次污染过程的边界层逆温均不明显。气流后向轨迹模拟表明,两次过程都是由区域污染输送造成的,都主要来源于苏中、苏北地区,13日的污染源可能还有苏南和安徽地区。  相似文献   

15.
对2015年3月至2018年2月共36个月荆门市PM2.5浓度值按月和季节作特征分析,利用HYSPLIT轨迹模型对污染最为严重的冬季进行后向48h气团轨迹模拟。结果表明:PM2.5月均浓度表现为1月最高,达到107μg/m3,7月最低,为30μg/m3,冬季平均值为92μg/m3,显著高于其它季节,并且冬季高浓度PM2.5主要与本地地面5—11m/s的偏北(N、NNE)大风伴随出现;气团轨迹分为西南、东北、西北三个路径,近地面传输的东北路径和高空传输的西南路径气团均引起PM2.5浓度升高,而西北路径气团整体上对污染物具有一定清除作用;东北路径方向的河南以及靠近荆门市的西北、西南向地区为48h的潜在源贡献大值区。在通过气象条件定性判断荆门未来的PM2.5浓度变化时,因东北路径近地面传输的特性,应关注上游潜在源区内地面站点PM2.5的浓度值;对于高空传输的西南路径,应关注高空水汽的输送情况,以及轨迹高度下降地区即水汽的沉降区是否在潜在源区;西北路径为干冷空气的高空传输,在较接近荆门时轨迹高度才开始明显下降,应关注西北方向近距离潜在源区的地面站点PM2.5的浓度值。  相似文献   

16.
在进入冬半年后,海口市受弱冷空气或较强下沉气流控制时,易出现污染天气,对2013—2015年当年10月至翌年1月的气团轨迹进行了聚类分析、潜在源贡献因子分析(Potential Source Contribution Function,PSCF)和重轨迹分析(Concentration Weighted trajectory,CWT),结果表明:在污染时段内,海口大多受到来自中国华南和华东的东北向气流影响。PSCF和CWT分析表明,广东、福建、江西的大部分地区,以及湖南东部、广西东部等地区,是对海口地区污染天气污染物浓度的潜在贡献大值区。在进行预报时,可参考主要天气影响系统,和一些关键区域的外源影响以及本地污染的堆积情况。  相似文献   

17.
连续雾霾天气污染物浓度变化及天气形势特征分析   总被引:8,自引:2,他引:6  
利用MICAPS资料、地面观测资料、NCEP资料和衡水市环境监测站细颗粒物(PM2.5)及PM10浓度资料,对2013年1月衡水市出现的连续雾霾天气从PM10及细颗粒物浓度演变、雾霾天气污染物浓度与地面要素关系、中低层环流形势特征进行了分析,结果表明:1)雾霾天气期间06:00(北京时间,下同)至07:00和16:00至21:00为PM10和细颗粒物浓度较低时段,PM10最大值出现在15:00,细颗粒物最大值出现在02:00,两者并不同时达到极值。2)雾霾天气污染物浓度与地面湿度并不是简单的正相关或负相关关系,还和许多其它因素有关。3)衡水市污染源主要来源于工业污染源、扬尘污染、冬季燃煤采暖、局部污染源及区域性污染。4)雾霾天气相对湿度和能见度基本呈负相关,气压变化不大,风向频率最多为北到东北风,平均风速一般都在2 m/s以下。雾日时大部分时段为雾和霾的混合物。5)重污染日期间500 hPa为平直偏西气流或西北偏西气流,没有明显的槽脊活动。而污染较轻的时段500 hPa为明显的西北气流控制或有槽脊活动。6)雾霾天气期间大部分日数08:00在850hPa以下都存在逆温层;地面气压场偏弱,尤其河北平原一带基本为均压场。最后对雾霾天气影响及对策进行了简单探讨。  相似文献   

18.
通过对河源市的空气污染物浓度及相关气象因子的分析,结合后向轨迹聚类分析等手段,研究了河源市秋季与夏季大气污染特性。研究表明:秋季,来自我国东南沿海的气团携带VOCs远距离输送会使河源市的臭氧污染相对较严重,臭氧的平均质量浓度最大8 h可达161μg/m~3,而受短轨迹气团影响时,对应不利于污染物扩散的静稳天气,除臭氧以外的各项污染物质量浓度均较高,平均的PM2.5质量浓度可达70μg/m~3,而来自河源正北方的气团快速经过较大片的森林地区时,各污染物输送累积及污染效应不明显。秋季受高压脊的影响,河源等地受下沉气流影响,风速较弱、光照强烈,容易促成臭氧污染事件的发生。夏季,受频繁降水的影响,总体上各项污染物的质量浓度均相对不高,各项污染物的质量浓度与气团来向的关系不大,但气团移动缓慢时扩散条件相对不利,颗粒物质量浓度会较高。  相似文献   

19.
秸秆焚烧导致湖北中东部一次严重霾天气过程的分析   总被引:1,自引:0,他引:1  
利用地面气象要素、火点信息及污染物资料,研究了2014年6月12~13日湖北省中东部地区一次重度霾天气的成因及污染特征。结果表明:导致此次霾天气的主要原因是安徽省北部大面积秸秆焚烧所形成污染气团受偏东北气流输送的影响,12日在湖北中东部形成了两条"带状"的能见度低值区,最低能见度仅为2.1 km。秸秆焚烧污染物输送气流由北向南影响湖北,主要作用于孝感—武汉—咸宁一带,3个地区细颗粒物(PM2.5)峰值浓度均超过了600μg/m3,且武汉和孝感的PM2.5与PM10质量浓度比值在12日增加到0.76和0.77,并出现了0.96和0.93的最大值,随着污染气团的传输,其中PM2.5所占比例会出现明显下降。SO2质量浓度的变化特征不显著,NO2质量浓度在污染物质量浓度达到峰值前1~3 h达到峰值,而CO是秸秆焚烧产生的主要污染气体,其质量浓度变化与PM2.5和PM10呈正相关关系,相关系数分别为0.66和0.67。风矢量和分析表明:6月12日湖北省中东部存在明显的东北来向气流输送,污染物的输送是该时段霾天气发生的主要影响因子,而6月13日湖北省东北边界处的输送气流已经明显减弱消失,东南部风矢量和异常偏小导致的污染物堆积是该地区污染持续的主要原因。  相似文献   

20.
统计分析2012—2013年宁波空气质量及污染物浓度,得出秋冬季宁波市空气质量最差,AQI均值92,首要污染物主要为PM2.5、SO2、PM10,其中,PM10、PM2.5的浓度超过了国家二级标准。2013年空气质量下降、污染程度明显加重主要表现为秋冬季空气污染加重。应用HYSPILT4模式计算输送轨迹并聚类分析,表明大气污染是可以通过中远距离输送影响到下风向的地区;外来污染源对宁波空气质量影响明显。宁波秋季轨迹比较复杂,共有7条轨迹,主要来自津京冀、黄海南部、浙江西南地区和东海,共占72%;冬季有4条轨迹,主要来自浙北和津京冀,共占81%。由此可见,宁波空气污染受其特定的地理环境和大气环流背景影响,存在远、近不同距离的污染物输送问题,西北方向的输送轨迹对宁波空气质量有明显影响,其AQI、PM2.5、PM10、NO2、SO2平均浓度分别可达104、72.9μg·m-3、122.8μg·m-3、54.1μg·m-3、37.8μg·m-3,远高于其它轨迹。特别是秋季来自京津冀、黄海南部以及冬季来自浙江北部、山西河北的轨迹,造成宁波重度或严重污染的重要原因之一。在重污染天气预报预警中,预报员需要密切关注PM2.5浓度变化。大气污染的防治除政府相关部门继续进行能源结构调整、交通源排放控制外,还需要更大范围区域乃至全国的协作才能从根本上改善城市的空气质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号