首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
杨浩  许冠宇  白永清  刘琳 《气象》2018,44(11):1454-1463
基于湖北省PM_(2.5)大气成分逐日监测数据和高分辨率气象再分析资料,利用EOF方法对2015—2016年湖北省近两年冬季月份PM_(2.5)的污染分型并分析其天气特征,探讨PM_(2.5)质量浓度与大尺度环流因子相关性,并计算得到海平面气压指数。结果表明:冬季PM_(2.5)质量浓度湖北中部高于东西部,时间序列上存在较大波动,且近两年有明显下降趋势。湖北省冬季PM_(2.5) EOF前4个特征向量时间系数的方差贡献为86. 2%,能够反映PM_(2.5)空间场的主要特征。湖北省PM_(2.5)污染的天气型特征主要有两类:传输型污染和本地累积型,前者造成的PM_(2.5)污染浓度高于后者。传输型分别表现出全区污染、西部污染和中北部污染,全区污染时段湖北近地层以偏北气流为主,有利于将北方地区PM_(2.5)输送到湖北省;西部污染在于偏东气流将东部污染物以及沿海地区水汽输送到湖北省,同时受鄂西山脉的阻挡,污染物在湖北省西部地区聚积;中北部污染表现为东北和西北气流的汇集效应。本地累积型在静稳天气条件和地形共同作用下造成湖北东部污染和中南部污染。三种传输型污染物输送通道分别为北路输送、东路输送和东北路输送。东亚冬季风系统的高层东亚大槽和低层大陆冷高压减弱时,PM_(2.5)质量浓度增加。关键区的海平面气压相关指数与湖北省PM_(2.5)质量浓度和EOF第一模态时间系数相关性较好,对预报预测有一定指示意义。  相似文献   

2.
选取2016年12月17—22日青岛一次典型重污染天气,利用大气污染物监测结果、地面气象要素观测资料和欧洲中期天气预报中心(ECMWF)ERA5再分析数据对此次过程中大气污染物及气象场的变化特征进行分析。观测分析表明此次污染过程持续时间长达5 d以上,其中19—21日为重污染天气(PM 2.5 日均质量浓度ρ>150 μg·m-3)。根据气象场和PM2.5质量浓度变化特征,此次污染过程可分为3个阶段:17日02时—19日08时为青岛污染物累积阶段,研究区受西南风控制,PM2.5质量浓度逐渐上升,700 hPa等压面上高空槽的维持及槽前持续的南风、西南风有利于污染物累积,同时近地面相对湿度增加,是此次持续性重污染天气形成的重要条件;19日09时—20日20时为青岛污染维持加剧阶段,相对湿度大、风速很小,污染物扩散条件差,PM2.5质量浓度最高;20日21时—22日08时为青岛污染消散阶段,青岛对流层中下层及地面风速均增大并产生弱降水,有利于污染物扩散稀释和湿清除,PM2.5质量浓度逐渐降低。WRF-Chem数值模式能够较好地模拟出主要气象要素和青岛PM2.5 质量浓度的变化特征,模拟结果表明山东省内污染物排放贡献了青岛PM2.5的49.5%;污染物跨省输送对此次污染事件也有重要贡献,其中来自研究区以南的安徽和江苏的排放对青岛PM2.5的贡献率可达25.5%。  相似文献   

3.
秸秆焚烧导致湖北中东部一次严重霾天气过程的分析   总被引:1,自引:0,他引:1  
利用地面气象要素、火点信息及污染物资料,研究了2014年6月12~13日湖北省中东部地区一次重度霾天气的成因及污染特征。结果表明:导致此次霾天气的主要原因是安徽省北部大面积秸秆焚烧所形成污染气团受偏东北气流输送的影响,12日在湖北中东部形成了两条"带状"的能见度低值区,最低能见度仅为2.1 km。秸秆焚烧污染物输送气流由北向南影响湖北,主要作用于孝感—武汉—咸宁一带,3个地区细颗粒物(PM2.5)峰值浓度均超过了600μg/m3,且武汉和孝感的PM2.5与PM10质量浓度比值在12日增加到0.76和0.77,并出现了0.96和0.93的最大值,随着污染气团的传输,其中PM2.5所占比例会出现明显下降。SO2质量浓度的变化特征不显著,NO2质量浓度在污染物质量浓度达到峰值前1~3 h达到峰值,而CO是秸秆焚烧产生的主要污染气体,其质量浓度变化与PM2.5和PM10呈正相关关系,相关系数分别为0.66和0.67。风矢量和分析表明:6月12日湖北省中东部存在明显的东北来向气流输送,污染物的输送是该时段霾天气发生的主要影响因子,而6月13日湖北省东北边界处的输送气流已经明显减弱消失,东南部风矢量和异常偏小导致的污染物堆积是该地区污染持续的主要原因。  相似文献   

4.
陈镭  周广强  毛卓成  瞿元昊 《气象》2020,46(5):675-686
2017年10月29日、11月2—3日和7—8日上海地区出现了三次PM2.5短时重度污染过程,根据环流形势可以将其分为两种污染类型:10月29日为输送型污染,具有污染输送过程快,污染持续时间短的特点;11月2—3日和7—8日为静稳叠加输送型污染,具有污染输送过程较慢,污染持续时间长的特点。分析这三次污染过程的气象要素特征可知,小的风速、稳定的垂直结构及下沉运动使得污染物在水平和垂直方向上都不易扩散出去,为污染物的积聚和污染的长时间维持创造了有利条件。另外,分析北京—上海一线PM2.5浓度、地面气象要素和垂直环流的剖面图发现,10月29日污染带自北向南呈窄带状分布,中低空和近地面对上海的污染输送都有贡献;11月的两次污染过程污染自北向南持续时间较长,分布范围较广,对上海的污染输送以近地面传输为主。计算三次污染过程的静稳指数和输送指数,进一步验证了10月29日的重度污染由外源输送造成,而11月的两次污染则由本地积累和外源输送叠加造成。应用FLEXPART扩散模式和华东区域大气环境数值预报系统对11月的两次污染过程进行定量分析,得到与观测数据分析一致的结论,同时发现这两次污染过程的潜在来源区域均为上海周边地区,来源集中,且江苏、浙江和安徽都有贡献。  相似文献   

5.
秦皇岛地处河北省东北部,是环渤海重要的港口城市,在近几年京津冀地区减排效果较好的情况下,于2019年1月出现了多次持续细颗粒物(PM2.5)污染过程。因此本文利用耦合了数值源解析模块ISAM(Integrated Source Apportionment Method)的区域空气质量模式RAMS-CMAQ(Regional Atmospheric Modeling System–Community Multiscale Air Quality),对2019年1月秦皇岛地区PM2.5进行模拟,并将PM2.5质量浓度高于(低于)75 μg m-3的时段划分为污染(清洁)时段,分别探讨了两个时段本地排放源对秦皇岛市PM2.5质量浓度的贡献情况,并且进一步探讨了秦皇岛各区县及外地排放源对秦皇岛市4个国控环境监测站点(第一关站、北戴河站、市监测站、建设大厦站)PM2.5质量浓度的区域传输特征。结果表明,秦皇岛地区PM2.5质量浓度整体呈“南高北低”式分布。清洁时段,PM2.5质量浓度受本地贡献较大,青龙县、卢龙县大部分地区贡献为40%~50%,海港区、抚宁区、北戴河区、第一关区及昌黎县大部分地区贡献在60%以上;4个国控环境监测站点受跨界输送贡献占34.7%~41.6%。污染时段,秦皇岛市本地贡献相对于清洁时段整体下降10%左右,当地大气污染受到跨界区域传输影响增加;而在4个国控站中,北戴河站、第一关站受到跨界输送贡献分别下降1.0%和2.3%;市监测站、建设大厦站受到跨界输送贡献分别上升2.9%和2.0%。  相似文献   

6.
针对2013年1月江苏淮安地区发生的一次连续性雾霾天气过程,分析该天气过程中PM10和PM2.5的质量浓度演变特征、能见度与气象要素之间的关系、中低层环流特征以及污染物来源。结果表明:雾霾期间PM10和PM2.5质量浓度最低值出现在05:00至07:00(北京时间,下同)和13:00至17:00,最高值出现在21:00至23:00,PM10和PM2.5质量浓度并非同时达到极大值;持续变化较小的气压梯度、较低的风速、相对湿度的增大以及PM2.5和PM10质量浓度的增高是雾霾发生发展的必要条件;能见度与气压、相对湿度、PM2.5质量浓度的相关性较好,建立回归方程,对能见度的整体变化趋势拟合效果较好;高空环流形势平稳、中低层的暖平流、持续稳定少动的地面高压场分布为雾霾天气的持续发生发展提供了有利的形势背景;稳定的层结结构、中低层偏东及偏东北方向气团的输送、本地污染源以及严重的空气污染是此次过程中能见度偏低、霾天数较多的主要原因。  相似文献   

7.
通过对龙华新区2个监测站点2012年的PM2.5监测数据进行分析,得出新区PM2.5年均质量浓度值为0.043 mg/m3,全年总超标天数为30 d,超标率为8.2%.PM2.5污染具有明显的季节性特征,干季污染严重,雨季则较轻.新区常年盛行偏北风,处于东莞、惠州等污染严重区域的下风向,且风速偏小,是新区PM2.5来源及质量浓度升高的重要原因之一.同时,利用大气环境影响评价系统的AERMOD模型对新区PM2.5污染质量浓度分布进行模拟,结果显示新区PM2.5主要来自本地污染源,贡献率为51.2%,外地污染源贡献率为48.8%.其中,PM2.5污染主要受机动车尾气和道路扬尘影响,贡献率为32.0%,其次是施工项目和裸露土地影响,贡献率为18.2%,工业污染源影响非常小.  相似文献   

8.
PM2.5污染仍然是湖北省冬季大气污染的首要污染类型,且具有明显区域传输特征,重污染过程的空气污染气象条件有别于华北地区,值得关注。采用WRF/Chem不同排放情景下的模拟结果,并结合观测分析,研究了2015年12月—2016年1月湖北省PM2.5重污染过程的气象输送条件及日变化特征,从大尺度输送条件和局地边界层动力作用分析了外来污染物水平传输、悬浮聚集和向下传输的过程,并解释了该地区观测到的午后PM2.5浓度特殊峰值的气象成因。结果表明,湖北重污染爆发以区域传输为主,地面观测PM2.5极值对应10 m风速可达8—10 m/s,边界层0—1 km为较强偏北风输送,污染传输通量极值位于400 m高度附近,为重要传输通道,低空无明显逆温,重污染过程具有“非静稳”边界层气象特征。重污染形成的大尺度输送条件为,长江中下游及北部地区偏北风异常偏强,南部地区风速减缓,使污染物在中游平原堆积,鄂北边界风速越大,越有利污染输送增长。传输性污染主要来自偏北和东北方向的污染源输送,潜在源区贡献主要为途经偏北通道上的豫中、南阳盆地和关中地区,以及途经东北通道上的鲁、皖、苏等部分地区。PM2.5浓度日变化双峰结构的天气成因不同,21—24时(北京时)峰值为静稳性污染,11—14时峰值为传输性污染。污染输送受大气边界层高度影响,日出前大气边界层高度较低,层结稳定并伴有上升运行,使得低空外来输送悬浮聚集在400 m高度附近;日出后随大气边界层高度升高,静稳层结被破坏,在干沉降作用下高浓度PM2.5开始向下传输,并在午后地面形成峰值。   相似文献   

9.
基于2015—2021年近7 a乌鲁木齐冬季逐小时地面常规观测资料和空气质量数据,并结合ERA5再分析资料对重污染日PM2.5不同增长类型的污染特征、环流形势以及气象条件进行综合分析。研究发现,近7 a乌鲁木齐冬季PM2.5重污染及以上级别的比例由41.2 %降至8.6 %,PM2.5重污染天数由63 d降至13 d,超过70%重污染日PM2.5浓度增长分布在60 μg?m-3以内。依据PM2.5增长类型判别方法,近7 a乌鲁木齐冬季重污染日以缓慢型增长为主。对比分析爆发型增长和缓慢型增长的天气背景形势表明,两种增长类型在欧亚范围内500 hPa高空形势上均主要受西北或偏西气流影响,爆发型增长的高压脊势力较强,乌鲁木齐处于高压中心后部且气压梯度显著;而缓慢型增长的高压脊较为平直,乌鲁木齐位于高压后部的均压场控制下,气压梯度相对较弱。对比两种类型边界层内逆温厚度和强度发现,爆发型增长在925~700hPa之间的逆温层平均厚度明显大于缓慢型增长,前者逆温强度达到1.8 ℃?(100m)-1,明显高于缓慢型增长的1.2 ℃?(100m)-1,表明造成两种PM2.5不同类型增长与边界层内的逆温垂直特征分布结构存在密切联系。  相似文献   

10.
武威  顾佳佳  鲍玉辉 《湖北气象》2020,39(3):259-268
利用常规气象资料、颗粒物观测数据、NCEP 1°×1°分析资料、GDAS 1°×1°数据、激光雷达资料等,对2018年11月下旬河南漯河一次连续重污染天气过程成因与污染物传输特征进行了分析。结果表明:(1)本次污染与天气形势关系密切,前期受静稳纬向环流和地面均压场影响,有利污染积累;中期高空槽与地面变性高压引导弱冷空气东移南下,产生滞留效应,污染物迅速增加;后期因低层东路冷空气扩散与静稳形势恢复,污染继续积累增长,形成连续性重污染。(2)PM_(2.5)造成重污染时因辐射逆温持续稳定,导致污染加剧;PM_(10)重污染时因逆温层减弱消失,有利污染物输送沉降;混合重污染时因近地层湍流混合加强形成逆温,污染持续发展。(3)本次重污染天气主要有5条传输路径,西南路径和偏东路径污染比例较高,其轨迹短,高度在900 hPa以下,对PM_(2.5)近距离输送作用明显;西北路径和偏北路轨迹长,起始高度在700—600 hPa之间,高空中远距离输送以PM_(10)为主。(4)受静稳条件和近地层高湿影响,高消光带维持在600 m以下,较低边界层抑制垂直扩散,导致污染细颗粒物与沙尘积累并长时间共存。(5)本次重污染是本地污染累积和高空外源污染输送共同影响。除漯河本地污染贡献较高外,高潜在源区主要集中河南西南部、东北部以及与山东交界处,这也是本次持续性污染发展的重要原因。(6)重污染时地面偏北风占主导,其他方向风速较小,有利形成污染辐合以及污染物二次转化并加剧污染。  相似文献   

11.
连续雾霾天气污染物浓度变化及天气形势特征分析   总被引:8,自引:2,他引:6  
利用MICAPS资料、地面观测资料、NCEP资料和衡水市环境监测站细颗粒物(PM2.5)及PM10浓度资料,对2013年1月衡水市出现的连续雾霾天气从PM10及细颗粒物浓度演变、雾霾天气污染物浓度与地面要素关系、中低层环流形势特征进行了分析,结果表明:1)雾霾天气期间06:00(北京时间,下同)至07:00和16:00至21:00为PM10和细颗粒物浓度较低时段,PM10最大值出现在15:00,细颗粒物最大值出现在02:00,两者并不同时达到极值。2)雾霾天气污染物浓度与地面湿度并不是简单的正相关或负相关关系,还和许多其它因素有关。3)衡水市污染源主要来源于工业污染源、扬尘污染、冬季燃煤采暖、局部污染源及区域性污染。4)雾霾天气相对湿度和能见度基本呈负相关,气压变化不大,风向频率最多为北到东北风,平均风速一般都在2 m/s以下。雾日时大部分时段为雾和霾的混合物。5)重污染日期间500 hPa为平直偏西气流或西北偏西气流,没有明显的槽脊活动。而污染较轻的时段500 hPa为明显的西北气流控制或有槽脊活动。6)雾霾天气期间大部分日数08:00在850hPa以下都存在逆温层;地面气压场偏弱,尤其河北平原一带基本为均压场。最后对雾霾天气影响及对策进行了简单探讨。  相似文献   

12.
统计宿迁市2017—2021年秋冬季PM2.5数据以及同期常规气象观测资料,基于PM2.5日变化特征,根据15:00—23:00的浓度变化将其分为快速积累、慢速积累、消散三大过程,从积累速率的角度分析了宿迁市PM2.5的积累特征,并将其应用于重污染天气过程下的环流形势与积累速率相关性的探讨。结果表明,发生快速积累过程的平均积累速率为7.14μg·m-3·h-1 ;慢速积累过程平均积累速率为3.27μg·m-3·h-1 ;发生消散过程的PM2.5平均消散速率为5.42μg·m-3·h-1 。PM2.5慢速积累过程中气温高,风速大,湿度小,逆温强度弱,快速积累则与之相反。慢速积累过程的PM2.5潜在源区主要位于苏北地区及北部的山东、河北地区,快速积累过程的PM2.5主要潜在源区则位于西部的安徽、湖北地区。快速积累过程以高空槽后配地面高压前部型为主,慢速积累过程以纬向环流配合地面均压场为主。  相似文献   

13.
利用2007年5月30~31日天气图、物理量场、卫星云图和雷达回波资料及常规观测资料,采取天气学诊断分析方法,对湖北省初夏一次暴雨天气过程的大尺度环流特征、中尺度系统和强降水成因进行了分析。结果表明:高层辐散、冷空气与西南暖湿气流交绥、鄂中切变线维持、副热带高压稳定少动,是这次暴雨发生发展的有利大尺度环流背景;强对流云团或西南低涡中尺度云团是造成江汉平原北部、鄂东及鄂西南北部强降水的主要云团;整个暴雨过程伴随着强对流雷达回波的初生、发展、合并和减弱,降水主要由逐渐发展的强回波造成;低空急流输送水汽、中低层层结对流不稳定、低层辐合与高层辐散配置以及暴雨区存在较强锋生作用是此次暴雨的主要降水成因。  相似文献   

14.
周涛  周青  张勇  吴昱树  孙健 《气象》2023,49(11):1359-1370
PM2.5和O3已经成为汾渭平原城市最主要的污染物,两者之间相互影响,在暖季经常同时出现构成污染,其污染程度与气象条件密切相关。利用2015—2021年汾渭平原12个城市逐日PM2.5和O3浓度、地面气象观测数据以及ERA5高空再分析数据等资料,分析了汾渭平原PM2.5和O3的时空变化特征以及复合污染发生时PM2.5和O3的关系,并研究了局地气象条件和天气形势对复合污染的影响。结果显示,该地区年均PM2.5和日最大8小时O3浓度分别在2017年和2018年开始持续下降,复合污染日数也在2019年后开始持续下降;复合污染主要发生在3—9月,在汾渭平原东部城市出现次数较多,多出现在高温、低湿的环境下;最后利用T-PCA算法(正交主成分分析)将复合污染的天气环流形势分为4种类型,主要呈现出以高空西北气流或偏西气流、低层为暖区偏南风或微风为主的天气特征。研究结果对汾渭平原的大气...  相似文献   

15.
利用TrajStat软件和GDAS全球同化气象数据,对江西省赣江新区2011—2020年四季72 h气团后向轨迹进行聚类分析,并结合PM2.5和O3逐小时浓度数据,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)分析了2016年12月2—10日一次污染天气过程中大气污染物输送对赣江新区上空污染物浓度的贡献。结果表明,赣江新区2011—2020年四季气团后向轨迹中占比最大的均为短支气流,其中春季的短支气流来源于东侧,其他季节均来源于东北方向的安徽省,夏季和冬季的长支气流与季风的季节性变化一致。在2016年12月2—10日的污染天气过程中,赣江新区的PM2.5潜在源区主要分布于江西省北部、湖北省东南部,O3潜在源区主要分布于江西省北部、湖北省南部和湖南省东北小部分地区;同时天气形势显示,赣江新区处在槽后脊前,湖北省东南部存在偏强西北风,为大气污染物向赣江新区的输送创造了条件。  相似文献   

16.
利用北京市房山区良乡镇和琉璃河镇内的区域自动气象站和环境监测站观测数据,对2013年至2015年PM_(2. 5)、PM_(10)、NO_2、SO_2、CO 5种大气污染物浓度变化特征进行了统计分析。结果显示,近3年来,两个镇综合污染物指数呈现逐年下降趋势,各污染物对房山区整体大气污染的贡献率从大至小依次为PM_(2. 5)、PM_(10)、SO_2、NO_2、CO,PM_(2. 5)已取代传统大气污染物SO_2成为房山区的主要大气污染贡献体。两个站点各污染物浓度均表现出明显的季节、月、日变化特征。在不同季节条件下,局地气象要素与污染天气发生概率之间有着很好的相关关系。因此,可根据气象要素分级方法找出各季节污染天气发生时最敏感的气象因素,为局地污染天气预报提供参考指标,也为防范空气污染、制定科学的综合管理措施提供科学参考。  相似文献   

17.
北京一次持续霾天气过程气象特征分析   总被引:6,自引:0,他引:6       下载免费PDF全文
2013年1月10-14日,北京平原地区出现了水平能见度在2 km以下、以PM2.5为首要污染物、空气质量持续5 d维持在重度以上污染水平的霾天气。综合分析此次霾天气过程的天气形势、北京地区常规和加密气象资料以及城郊连续观测的PM2.5浓度资料。结果表明:此霾过程期间,北京高空以平直纬向环流为主,受西北偏西气流控制,没有明显冷空气南下影响北京地区,地面多为不利于污染物扩散和稀释的弱气压场;大气层结稳定、风速小(日平均风速小于2 m·s-1)、相对湿度较大(日平均相对湿度在70 %以上)、逆温频率高强度大,边界层内污染物的水平和垂直扩散能力差;北京城区及南部的京津冀地区人类活动排放污染物强度大,在相对稳定和高湿的天气背景下,受地形和城市局地环流的影响,北京本地污染物累积和区域污染物输送以及PM2.5细粒子在高湿条件下的物理化学转化等过程共同作用造成此次北京城区及平原地区污染物浓度快速增长并持续偏高,高浓度PM2.5对大气消光有显著影响,造成低能见度和持续霾天气。  相似文献   

18.
利用中国国家地面站逐小时气象观测资料、中国环境监测总站空气质量逐时监测数据、ECMWF 0.125°(纬度)×0.125°(经度)再分析资料及青岛市八关山自动站常规要素逐小时数据,对2018年1月15~22日青岛市一次重度污染雾—霾天气过程的特征及其影响因子进行分析。结果表明:PM10为首要污染物,污染过程中青岛市48 h 输入污染源前期主要为北方干冷气团与江淮湿空气在山东半岛北部汇聚堆积,后期则主要包括山东省内局地大气污染物排放。雾—霾期间,500 hPa中高纬地区受乌拉尔山阻塞高压和中西伯利亚冷低压控制,宽广的东亚横槽稳定维持,青岛上空以平直西风气流为主,地面等压线稀疏,风速小;随着横槽转竖,纬向型环流转为经向型,冷空气大举南下,风速急增,降雪发生,雾—霾迅速消散。在静稳的大气环流背景下,当近地逆温层内弱风或持续吹陆风,对流层低层上升和下沉运动较弱,水汽条件较好时,有利于雾—霾维持。综合分析雾—霾各阶段PM2.5浓度和相对湿度与能见度间的关系发现,霾阶段两因子影响力相当;雾阶段能见度主要受相对湿度的影响;静稳条件下PM2.5浓度累积增加是影响雾、霾混合阶段能见度的主要因子。  相似文献   

19.
王建生 《湖北气象》2008,27(2):154-159
采用T213产品中的物理量资料和天气图、卫星云图和雷达回波资料,对2007年7月1日江汉平原和鄂东的大暴雨天气过程的环流背景及其动力、热力、水汽条件进行了综合分析。结果表明:乌山低槽分裂出的冷空气东移,在华北东北部形成气旋波,其后部冷空气南下与副热带高压北上携带的暖湿气流相对峙所形成的湿度锋锋生和低层低涡、切变线是造成本次大暴雨天气过程的主要天气系统。有利强降水的各物理量场配合是降水云团迅速发展加强的有利条件。有能量锋区配合的θse高能区和K指数≥39℃的区域是有利大暴雨产生的区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号