首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
本文利用FY-2C静止卫星资料,以2013年5月8日四川盆地一次飞机增雨作业为例,反演了云顶温度、云顶高度、云粒子有效半径、液水路径、云光学厚度等云物理量参数,结合自动气象站资料和探空资料等,对此次飞机增雨效果进行了物理检验。结果表明:作业前,云顶温度-13℃,云粒子有效半径10μm,云体较厚,含有丰富的过冷水,具有较好增雨潜力;作业后,作业区云层增厚,云顶温度降低,云粒子有效半径增加至25μm,云顶冰晶化,冰水转化过程加快,产生了较多的降水,降水量增幅明显;作业后,对比区降水不充分,各云物理参数无明显变化。   相似文献   

2.
利用中国气象局人工影响天气中心研发的云参数卫星反演系统反演得到的产品,结合地面自动站观测资料,对2009年9月19—20日降水过程的云参数及地面雨量进行对比分析。结果发现:云顶高度、云顶温度、过冷层厚度和云光学厚度对本次降水过程指示性不强,而云粒子有效半径及云液水路径对降水有较好的指示作用,且云液水路径指示作用更强,二者的变化超前于地面降水30min到1h;云液水路径及云粒子有效半径大值区与地面雨量的大小呈正相关,云液水路径值大于400g.m-2及云粒子有效半径大于27μm区域与地面雨强中心位置基本一致。掌握云参数的演变规律,有助于监测、识别大范围人工影响天气作业条件和分析可播区。  相似文献   

3.
利用FY-2C卫星云参数产品分析了2008年8月8日北京消(减)雨作业过程。结果显示,同一时刻液水路径、云粒子有效半径、云顶高度、云顶温度的绝对值和云体过冷层厚度的大值区分布一致;作业前后液水路径、云粒子有效半径、云顶高度、云顶温度和云体过冷层厚度变化明显。  相似文献   

4.
广州亚运开幕日人工消(减)雨作业的物理响应分析   总被引:1,自引:0,他引:1  
2010年11月12日广州亚运会开幕日当天对广州西部降水云系实施了飞机人工消(减)雨作业。对实施人工消(减)雨作业前后FY-2C/D静止卫星资料反演的云顶高度、云顶温度、云粒子有效半径、液水路径等4个云参量的时间序列变化特征进行分析,初步明确了此次飞机人工消(减)雨作业的物理响应,结果显示:作业后,云顶高度高的云系面积减小,整个目标云系迅速收缩;针对冷暖云层分别采用冷暖云催化剂进行催化,作业后冷云层很快消散;作业目标云系的云粒子有效半径在母云系的云粒子有效半径增加时出现不断减小的情况,这与催化后降水提前产生,大粒子从云体落至地面,使得目标云中大粒子越来越少有关;云中垂直液水含量在作业后迅速减小。  相似文献   

5.
该文利用机载激光云降水粒子探测数据、FY-2G静止卫星资料及其反演的云参量、上机宏观记录资料和当日08时探空资料,详细分析了2020年5月28日在贵州省西北部开展的一次飞机人工增雨作业过程中和作业后的云的宏微观物理参数。结果表明:①作业前拟作业区域有云系覆盖,云体亮度在-5~-14 ℃之间,云顶高度为3~4 km,云顶温度在0~-10 ℃之间。作业后3 h内云体亮温值明显下降,云顶温度降低至-30 ℃左右,云顶高度明显抬高,作业区5 km的范围有所扩大,表明作业后云体发展;②云降水粒子测量过程中发现,云粒子主要出现在5~6.3 km之间,降水粒子则主要存在于4~4.5 km之间,相同时刻所测量到的降水粒子比云粒子数浓度少1个量级。不同温度层级的粒子形态也不一致,0~-4.7 ℃主要是柱状冰雪晶,-6.5~-7.2 ℃主要是宽枝状、针状聚合体冰雪晶。  相似文献   

6.
利用2011—2020年ERA5再分析降水资料、CERES云物理参数产品,分析新疆云参数的时空变化分布特征,归纳总结云物理参数与降水的相关性,结果表明:1)云水路径(冰相)值、云粒子有效半径(冰相)、云光学厚度与降水量的空间分布一致,均为山区最大,北疆次之,南疆最小。2)夏季(6—8月)在南、北疆、山区云水路径(液、冰相)、云顶(底)温度、云光学厚度与降水量呈同位相变化;云粒子有效半径(液、冰相)、云顶气压与降水量呈反位相变化。3)夏季(6—8月)北疆、山区的云水路径(液、冰相)值、云顶(底)温度、云光学厚度,南疆云光学厚度与降水量呈正相关;北疆云粒子有效半径(冰相),南疆云粒子有效半径(液相)、云顶气压,山区云粒子有效半径(液、冰相)、云顶气压与降水量呈负相关。  相似文献   

7.
利用FY2C静止卫星云顶物理参数及地面加密雨量观测等,结合MM5中尺度非静力数值预报模式,综合分析了典型层状云降水过程的云系演变和结构特征,揭示了云顶参数与单站雨强之间并不是简单的量化统计关系:即降水大,每小时降水量与云顶高度、有效粒子半径是较好的正相关,与云顶温度是较好的负相关;反之则不尽然,云顶高度高、云顶温度低、有效粒子半径大却不一定降水大。并用模拟结果分析解释了形成这种现象的机理。  相似文献   

8.
河北春季一次飞机人工增雪的综合分析   总被引:1,自引:0,他引:1  
2013年4月19日,河北省人工影响天气办公室在河北中南部地区根据云系特点首次采用多层次水平催化和垂直验证的方式对层状云进行人工催化和探测。本文利用机载仪器所取得的飞机探测资料,结合实时天气、卫星、雷达、探空和雨量观测资料,分析了河北春季层状云增雪作业的技术指标,探讨了航测微物理参量和卫星、雷达、探空等资料在作业中的应用。结果表明:云在发展期雷达回波由15 dBZ逐步上升到25-35 dBZ,卫星反演的云顶高度、云顶温度、有效粒子半径、光学厚度等都有增加;云在中后期有效粒子半径、光学厚度、液水路径迅速下降,雷达回波同时减弱。在高度3 177-5 723 m之间过冷云滴达100-700个/cm^3,含水量在0.01 g·m^-3左右,最大0.081 g·m^-3,云粒子主要在此增长,形成降水粒子,该区间适宜催化。作业后,影响区内云体发展,雷达回波增强,出现35 dBZ强回波,且强回波中心扩大;卫星反演的云顶高度、光学厚度等比对比区有明显增加。  相似文献   

9.
利用河北省、河南省和山西省2013—2014年的每日10—15时逐时FY2E卫星反演得到的云结构特征参数和地面小时降水,统计分析了云顶高度、云顶温度、云光学厚度和云粒子有效半径等4类云结构特征参数与地面降水的关系。主要结论有:随着云光学厚度的增加,降水概率呈增加趋势。云光学厚度比其他云参数对降水更具有指示意义,当云光学厚度大于20时,降水概率显著增大。双参数、多参数组合下,对地面是否出现降水的判断和识别要优于单个云参数的判别结果。4类云参数中,云光学厚度与降水强度呈正相关关系,对降水强度的影响最为显著;云顶温度和云顶高度对降水强度的影响次之;云粒子有效半径与降水强度的关系不明显。地面降水时,当云光学厚度小于20或云光学厚度介于21—30、云顶温度大于-15℃时,出现小雨的概率最大;当云光学厚度介于21—30、云顶温度小于-15℃或云光学厚度大于30、云顶温度大于-30℃时,出现中雨的概率最大;当云光学厚度大于30、云顶温度小于-30℃时,出现大雨或暴雨的可能性最大。云光学厚度、云顶温度、云顶高度和云粒子有效半径等云结构特征参数组合使用,对判断降水概率和降水强度具有较好的指示作用。  相似文献   

10.
本文利用FY-4A卫星对2019年5月四川盆地实施的一次人工增雨减轻空气污染作业条件进行分析,综合分析增雨可播性,判别增雨潜力区和作业高度,为开展人工增雨作业提供可靠的依据,然后利用多普勒天气雷达、地面气象台站、空气质量指数、颗粒物污染物浓度等多种数据资料分析人工增雨作业前后作业云体宏观情况和空气质量、雨量的变化,对其作业效果进行分析。结果表明:(1)5月12日四川盆地西部有云系发展,作业前6小时作业区附近主要为积层混合云,存在大量过冷水,红色对流泡云顶温度约为-30℃,粒子有效半径为15~40μm,作业前0~3小时作业区位于深厚对流降水云边缘,云顶温度约为-40℃,粒子有效半径为7~40μm,作业区南部有大片积层混合云,提供大量过冷水;(2)作业区内,高低空配合的环流场形成了较有利的降水形势,作业云体过冷水丰沛,增雨潜力较好,符合人工播撒催化剂条件,适宜开展人工增雨作业;(3)经过人工增雨作业后,作业区雨量峰值降雨时间延长,总体雨量增加,作业区的AQI从82降到29,PM10从94μg/m3下降到28μg/m3,PM2.5从49μg/m3降到17μg/m3,而3个对比区没有实施人工增雨作业,空气质量指数持续超标数小时。   相似文献   

11.
2009年天津地区首场降雪过程分析   总被引:1,自引:0,他引:1  
宋薇  靳瑞军  孟辉  王兆宇 《气象科技》2012,40(6):996-1001
基于NCEP再分析资料、多普勒天气雷达产品与风云卫星云参数反演产品,对天津地区2009年的首场降雪过程进行了分析,研究表明:①造成此次降雪的主要天气系统是东移高空槽和地面倒槽;②降雪回波具备典型层云稳定性降水回波的特点,最强回波不超过35 dBz,伴随着降雪结束,回波顶高有所下降;③降雪过程云粒子有效半径数值维持在20μm,云体过冷层厚度、云顶高度较大,云顶温度在-30℃左右.随着降雪结束,云粒子有效半径、云体过冷层厚度和云顶高度数值逐渐减小,云顶温度则有所升高;④地面降水量和云粒子有效半径、云顶高度、云体过冷层厚度呈现正相关,与云顶温度呈现负相关.  相似文献   

12.
云特征参数与降水相关性的研究   总被引:3,自引:0,他引:3  
利用FY2C卫星和探空反演得到的云结构特征参数,结合地面降水,研究了云顶高度、光学厚度、云粒子有效半径和云厚度等云结构参数与降水的关系,并分类研究了层状云和对流云在不同降水强度情况下,云参数的频数分布规律及其与降水的关系。结果表明:通常云厚大于5km、云底较低、云粒子有效半径较大时,地面易出现降水,若云顶高于10km、云光学厚度大于20且云中无夹层或夹层稀薄时,地面雨强多大于1mm/h;对于层状云降水,当云光学厚度大于17时,地面出现降水的概率较大,随光学厚度值增加,地面雨强呈增大趋势;对于对流云降水,云顶高度和光学厚度相关性较好,云光学厚度大于17且云顶高于7km时,地面出现降水的概率较大,当光学厚度大于20时,地面雨强明显增大;层状云和对流云的降水概率均随云顶高度和光学厚度的增加而增大,降水概率与云光学厚度的相关性更为密切,光学厚度小于10的云很难产生降水,而云光学厚度大于20时,层状云和对流云的降水概率都会显著增加;综合云体的高度、厚度和云光学厚度等云参量的组合特征,对分析判断地面降水落区和降水强度更加有效。  相似文献   

13.
一次对流云团合并的卫星等综合观测分析   总被引:3,自引:2,他引:1  
利用FY2C卫星观测反演得到的云物理特征参数,结合雷达、微波辐射计和地面雨量等资料,综合分析了2008年7月17日中国安徽一次强降水过程的云合并特征。结果表明:对流云团发展合并是这次强降水发生的主要原因,同一区域内FY2C卫星反演的云光学厚度、雷达回波以及地面降水的分布演变具有较好的一致性,强降水落区与云光学厚度大值区以及雷达强回波区基本对应;对流云团中的液水分布不均匀,以团块状结构为主,对流云团合并时,常先有云体上部(云顶)的合并,一旦云中不均匀的液水合并,合并部位的云光学厚度迅速增加,地面微波辐射计观测的整层液水含量跃增,地面将会出现强降水;一般降水增强之前云顶抬升,光学厚度增大;若云顶高但光学厚度较小时,地面降水一般不明显,光学厚度与降水的关系更密切;对流云团合并初期,云底由小粒子组成,T-re图上表现为深厚的凝结增长区域,合并时整层云粒子的有效半径增长明显,粒子相态达到混合相态区和冻结层的温度不断升高。  相似文献   

14.
利用飞机云微物理探测资料,对2004年6月29日甘肃省东南部地区一次层积云(Sc)降水云系的微物理结构特征进行了详细的分析。飞机探测表明,此次云系主要分为两层,上层是纯冷性高积云(Ac),下层是层积云,观测分析主要针对Sc云。对不同高度层及Sc云顶附近的云粒子探测数据的分析结果表明,Sc云中云粒子的垂直及水平特征具有明显的不均匀性;Sc云区下层粒子特征参量起伏变化大,上层起伏变化小;云中含水量和大粒子浓度随高度升高有递增趋势。同一高度云区的粒子特征参量存在差别,表明即使在云区同一高度,不同水平区域的粒子形成和增长条件也有差异。Sc云中含水量较大,暖区最大液水含量达0.34 g·m-3。Sc云底有较强的逆温层存在,对云底附近的微物理结构特征造成一定影响,使得较小的云滴在逆温层顶附近和逆温层下部累积,含水量增大,但对较大尺度的液滴影响不明显。Sc云中不同高度处普遍存在暖雨过程,以Sc中部最为活跃;云顶附近冰相粒子的存在对云中暖云过程具有增强作用,对降水有利。  相似文献   

15.
一次积层混合云系人工增雨作业的综合观测分析   总被引:1,自引:0,他引:1  
综合利用多普勒天气雷达资料、FY-2E静止卫星反演云参数、MODIS极轨卫星反演产品和地面降水资料,对湖南2013年8月17日一次飞行作业的积层混合云降水结构及催化效果进行了分析。研究表明,作业云系以云顶温度较低的积层混合云为主。-10℃以上存在深厚的冰相增长带,云顶以冰相的大粒子为主;-10℃层以下,云滴的凝结碰并作用显著,冰相过程显著。光学厚度与地面降水有很好的正相关性,能很好地反映降水落区。回波垂直廓线表明,催化云系冷层厚度较大,0℃层附近液水含量较为充沛,降水以冰相过程为主。深厚的冰相层和冰水混合层的配置有利于降水的发生,在以冷云过程形成降水的位置进行催化作业,催化部位和时机较为科学合理。物理统计分析发现,催化后高层的回波强度率先增长,低层响应较为滞后,说明催化率先引起高层降水粒子的增长,雨滴增长下落后导致低层回波出现增长。相对于对比区,催化能引起回波强度和降水增强,并能相对延长目标云区的生命期,催化效果较为明显。  相似文献   

16.
卫星遥感人工增雨作业条件 I: 对流云   总被引:1,自引:1,他引:0  
利用卫星反演技术和云微物理分析方法,针对云微物理结构和降水形成过程探讨可播性、播撒方式,通过对不同类型对流云分析,归纳出4类可播云系,分析表明:1)重污染深厚对流云,当云底粒子有效半径小于7 μm、凝结增长带深厚、降水启动厚度大于20℃、碰并增长带薄、无雨胚带、晶化温度低于-30℃时,可播撒吸湿性核或播撒AgI.2)强上升冰雹云,若云外型强对流特征明显、各增长带增长缓慢、无雨胚带、晶化温度低于-30℃,且云顶附近存在明显的有效半径减小带,可播撒吸湿性核或播撒AgI.3)强上升强降水对流云,云底滴较大,通常大于10 μm,碰并增长较为充分,晶化温度低,一般低于-30℃,冰晶化延迟明显,冷云降水发展不充分,通过在0℃层附近播撒AgI促进冷云降水.4)污染性浅薄对流云,当云底有效半径小于10 μm、凝结增长带深厚、碰并增长带薄、无雨胚带、云顶有效半径小于14 μm、云厚3~6km,可播撒吸湿性核.  相似文献   

17.
本文针对基于多源探测数据的人工增雨效果物理检验,建立对比区选取的相似性度量系数(APC,Analogy Deviation-Pearson Correlation Coefficient),建立人工增雨效果物理检验的无量纲化指数PIDI(Physical Inspection Dimensionless Index)方法。结果表明:(1)人工增雨效果物理检验PIDI指数方法,能够实现以相似性度量系数APC最大程度削减增雨作业催化云体及降水的自然变率影响,以无量纲化处理方法综合多种具有量纲差异的云物理探测参数,最终以一个百分数变化率的数值形式综合度量多种云物理参数的整体变化趋势及程度。(2)应用PIDI方法对2014~2019年24架次飞机增雨作业进行增雨效果物理检验。人工增雨催化引起作业后3 h的云顶温度、云粒子有效半径、光学厚度、液水路径、组合反射率、≥30 dBZ回波面积、垂直累积液态含水量7项指标平均变化率3.4%~19.6%。18次作业的小时降水量变化率呈0~58.3%的增雨效果,6次作业的小时降水量变化率呈?37.5%~0的减雨效果。多数增雨作业引起的云物理参数变化明显小于降水变化。(3)具有增雨正效果的18次增雨作业,人工催化引起多数作业的云顶温度、组合反射率、垂直累积液态含水量呈增加趋势,多数作业的云粒子有效半径、光学厚度、液水路径呈减小趋势。(4)利用飞机增雨个例对比PIDI指数方法与K值方法异同。对于降水量变化趋势的检验二者具有一致性。二者差别在于PIDI指数方法能够反映人工催化引起的所有检验指标平均变化率。  相似文献   

18.
利用青海省东部地区2018年7—9月、2019年4—9月、2020年4—7月FY-2G卫星反演的云特征参量及地面小时降水数据,分析了云顶高度、云顶温度、云光学厚度和云粒子有效半径4种云特征参量对降水频率及降水强度的指示性。结果表明:(1)单云特征参量中,云光学厚度对降水频率指示性最强。中雨、大雨频率分别随云顶温度下降、云顶高度及云光学厚度增加呈明显增加趋势,而小雨频率随之呈减小趋势。(2)双云特征参量(云光学厚度和云顶温度)对降水频率指示性优于单云特征参量,降水频率随云光学厚度增加及云顶温度下降而增大。当云光学厚度为21~30且云顶温度大于0℃时,小雨频率最大。云光学厚度大于40且云顶温度为-45~-31℃时,中雨频率最大。云光学厚度大于40且云顶温度小于-45℃时,大雨频率最大。(3)三云特征参量(云顶温度、云光学厚度和云粒子有效半径)对降水频率指示性优于单云特征参量,但比双云特征参量降水频率指示性弱。  相似文献   

19.
利用山西省2008—2010年64架次云结构的飞机探测资料,结合地面观测和卫星数据统计分析了层状云系的宏微观特征。结果表明:降水云和非降水云系的微物理特征量,两者存在显著的差异,层状云要达到降水,云的厚度要达到近2000m;粒子尺度分布云粒子有效半径要达到10~14μm,降水性层状云低云含水量垂直方向上平均为0.03g/m3,中云含水量垂直方向上平均为0.05g/m3,;避光高层云-层积云、雨层云降水过冷水的最大值出现在距0℃层高度以上500m附近,其最大值分别为0.61,0.42g/m3;透光高层云降水过冷水的最大值出现在距0℃层高度以上300m附近,其值为0.28g/m3;云中水分按不同粒子尺度的分配可以看出,直径20、30μm的粒子含水量较高,对云中液态水含量的贡献较大,降水粒子主要由20、30μm的粒子转化;降水性层状云在垂直方向上的微物理结构特征非常明显,也是分层的。高层主要是冰相粒子,是冰雪晶,随高度降低冰雪晶的尺度增大,在4个典型温度层的观测中,液态含水量、云粒子及降水的浓度、尺度相较有很大不同。  相似文献   

20.
卫星遥感人工增雨作业条件 II:层状云   总被引:1,自引:1,他引:0  
通过卫星多光谱资料的定标,利用可见光反射率、3.7 μm和11 μm辐射亮温,反演了云顶粒子有效半径、云顶温度等云特征参数.运用图像合成技术,建立了反映云宏、微观特征的RGB合成图.利用发展的多光谱云微物理综合分析方法,通过极轨卫星分析了不同过冷层状云及其降水特征,结合增雨假设,总结出适宜人工增雨作业的卫星判据为:云厚大于1.5 km,云顶温度-5~-15℃时,有效半径小于25 μm;或云顶温度-15~-25℃时,有效半径小于15 μm.利用可见光反射率、云顶温度和有效半径多阈值建立人工增雨播云等级和分级显示.通过静止卫星跟踪云系演变,进一步确定播云部位和作业时机,指导人工增雨作业.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号