首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
两种土壤温度算法的对比分析   总被引:8,自引:1,他引:7  
为了定量理解黄土高原土壤的物理特性和过程, 为进一步提高陆面模式对该地区地表能量平衡模拟能力奠定基础, 本文利用2005年黄土高原陆面过程试验中7月22~26日期间裸土地表观测站土壤温度观测资料, 采用热传导(结合数学拟合法)、热传导-对流两种方法分别计算了该地区土壤热扩散率。本文还利用热传导-对流方法计算0.05~0.1 m浅薄土壤层的热扩散率垂直梯度与水通量密度之和, 其值介于0.80×10-6~2.43×10-6m/s之间。在此基础之上, 以0.05 m深度的土壤层为上边界, 分别利用上述两种方法模拟0.10 m深度的土壤层温度, 结果表明: 由于忽略土壤的垂直不均匀性和水分的垂直运动而只考虑热传导过程, 热传导方法不仅高估了土壤温度振幅, 而且高估了位相的延迟。而热传导-对流方法对温度振幅和位相的模拟值与实际观测值吻合较好, 白天 (北京时间08:00~20:00) 的温度模拟值相对测量值的平均误差、 标准差和归一化标准差分别为0.19 K、0.18 K和0.08%。  相似文献   

2.
为科学管理葡萄越冬埋土工作,基于2021/2022年冬季宁夏贺兰山东麓酿酒葡萄种植区10个葡萄园地温观测资料,分析不同葡萄园冬季日平均地温的变化特征和10~20 cm土壤热扩散率。结果表明:各葡萄园冬季土壤温度先下降后上升,土壤温度随着深度增加而上升,深层土壤温度波动幅度小于表层土壤,变化趋势也滞后于表层土壤。热传导方法可以很好地模拟冬季贺兰山东麓10、20 cm土壤温度,20 cm效果最佳,回归校正系数达0.947 5。贺兰山东麓葡萄园冬季土壤热扩散率k整体较高,各葡萄园区k值存在一定差异。产区北端大武口区的贺东庄园和永宁县偏东的圣易路丁酒庄k值较小,平均值分别为6.11×10-6、4.53×10-6 m2·s-1;靠近贺兰山的观兰酒庄、西鸽酒庄、留世酒庄、轩尼诗酒庄和产区南端的东方裕兴酒庄、红粉佳荣酒庄k值较大,平均值为11.08×10-6~14.94×10-6 m2·s-1;御马酒庄和美御酒庄的平均k值分别为9.63×10-6、8.52×10-6 m2·s-1。  相似文献   

3.
土壤水分的垂直运动对黄土高原糜田土壤温度的影响   总被引:3,自引:0,他引:3  
利用2005年8月21—23日黄土高原塬区地表过程野外试验加密观测土壤温度数据,通过耦合热传导对流方法计算得到糜田0.05~0.1 m浅薄土壤层的热扩散率为2.950×10^-7~3.015×10^-7m^2.s^-1,液态水通量密度为1.738×10^-6~2.197×10^-6m^3.s^-1.m^-2。在此基础之上,利用耦合热传导对流方程和传统热传导方法对土壤温度进行模拟,结果表明:由于传统热传导方法没有考虑土壤水分的垂直运动,模拟振幅偏大0.4 K、位相后移0.140 7 rad,与观测值的协方差分别为2.99、2.14;耦合热传导对流方法模拟振幅与观测值的协方差为2.13,模拟结果较理想。  相似文献   

4.
青藏高原地表热状况不仅对局地天气和气候变化有重要影响,而且还在次季节到季节尺度上对周边特别是下游地区的短期气候变化产生影响,因此日益受到研究者的关注。土壤热扩散率和土壤热通量是决定土壤热状况的两个重要因素。不同于以往的研究,本文利用青藏高原地区1980—2001年39个气象站0.8 m和3.2 m的土壤温度资料,采用热传导对流法计算了0.8~3.2 m深层土壤热扩散率和土壤热通量,分析了它们的年变化和年际变化特征,并分析了深层土壤热通量和高原季风的相关关系,得到了一些有意义的结论。青藏高原深层土壤温度随深度的增加振幅减小、位相延迟;在1980—2001年间,土壤热扩散率的变化总体呈减小趋势;土壤深层热通量年变化与土壤表层热通量的年变化具有相反的相位;总热通量与对流热通量的变化具有相同的相位;深层土壤热通量月平均值在冬季为负值(定义热流向上为正),夏季土壤热通量都为正值。土壤热通量与高原冬季风指数的变化趋势相反,相关系数为-0.53;而与高原夏季风指数变化趋势一致,相关系数为0.58,都通过了95%的显著性检验。这些结论对于促使我们认识高原陆气相互作用是非常有意义的。  相似文献   

5.
为了准确获取青藏高原理塘地区的土壤热参数,利用2006年8月27日至9月4日期间青藏高原理塘地区陆面过程试验采集的土壤温度资料,分别采用位相法、振幅法以及耦合热传导-对流法计算了0~10 cm,10~15 cm,15~20 cm三层土壤热扩散率,并用耦合热传导-对流法计算了土壤液态水通量密度。根据计算结果,以地表温度作为上边界条件,分别模拟了9月19-21日期间10 cm、15 cm和20 cm三个深度的土壤温度。对比模拟值与观测值后发现:由于考虑了土壤中液态水的动态变化,耦合热传导-对流法对各层土壤温度模拟效果最为理想,其模拟值与观测值的相关系数分别为:r10cm=0.97、r15cm=0.98、r20cm=0.99,置信度为99%。其中,对10 cm深度而言,耦合热传导-对流法模拟的土壤温度位相比实际观测值平均前移约0.21 h,土壤温度日振幅比实际值高估约0.79℃,而振幅法则平均前移约0.45 h,位相法高估土壤温度日振幅约0.96℃。  相似文献   

6.
青藏高原陆面过程对中国的天气和气候具有重要影响。高原西部因自然环境恶劣、近地层观测实验缺乏而难以精确确定陆面过程参数和土壤热属性等参数,陆面过程模型通常只能采用模型默认参数,给该地区陆面过程模拟结果带来了不确定性,也降低耦合了陆面过程模型的天气气候模式性能。本文利用2015年6月至2017年1月期间青藏高原西部狮泉河站的陆面过程观测资料,分析了该地区常规气象特征,估算了空气动力粗糙度、热力粗糙度、地表反照率、土壤热容量、土壤热传导率、土壤热扩散率和土壤水通量密度等重要参数。结果表明,狮泉河区域近地层以偏西风为主;气温、太阳辐射、比湿等的季节变化比较显著;干湿季分明,降水主要集中在6—9月。地表反照率受土壤湿度影响,存在微小的季节变化,平均为0.20,与沙漠和戈壁相当。空气动力粗糙度和零平面位移受各方位地物分布影响而存在差异,平均分别为5.58×10~(-2)m和0.44 m。不同热力粗糙度计算方案在该地区的性能存在较大差异;热传输附加阻尼及热力粗糙度受大气边界层层结状况影响,狮泉河大气边界层层结以不稳定为主,不稳定层结下热传输附加阻尼kB-1和热力粗糙度平均值分别为11.37和6.44×10~(-7)m。土壤热容量、热传导率、热扩散率和水通量密度年平均分别为0.95×106J·m~(-3)·K~(-1)、0.24 W·m~(-1)·K~(-1)、2.73×10~(-7)m~2·s~(-1)和0.12×10~(-5)m·s~(-1),与塔克拉玛干沙漠和敦煌戈壁的观测结果比较一致。  相似文献   

7.
金塔绿洲土壤中蒸发/凝结过程的初步分析   总被引:2,自引:2,他引:0  
韩博  吕世华  奥银焕 《高原气象》2011,30(6):1462-1471
利用2005年6月27日~7月4日金塔绿洲地表及0.40m土壤温度观测资料作为边界条件,结合一维土壤热传导方程计算了该时段0.05,0.10和0.20m深处的土壤温度。通过比较同时段观测值与计算值的观测,发现0.05m深处的土壤温度计算值与观测值的差异最大。结果表明,在方程中只需简单考虑浅层土壤蒸发/凝结过程,便可以使...  相似文献   

8.
黄土高原典型塬区土壤热性质变化特征研究   总被引:1,自引:0,他引:1  
马欣  张堂堂  陈金雷 《高原气象》2019,38(3):507-517
利用2014年7月至2015年1月黄土高原地区土壤含水量和土壤热性质观测资料,分析了该区域土壤热性质及其变化特征,并讨论了降水对土壤热性质的影响,结果显示:(1)除10 cm外,各层土壤热扩散率整体上呈现夏季下降,秋季平稳,冬季上升三个阶段,土壤体积比热容和土壤导热率表现为夏季上升,秋季平稳,冬季下降的趋势;100 cm处的土壤热扩散率始终高于40 cm,土壤热扩散率不随土壤深度增加而线性增加。(2)5 cm与10 cm层的土壤热性质均有明显日变化特征,且振幅较大,40 cm与100 cm处的日变化振幅逐渐变小。由于10 cm层土壤含水量的波动最大,该层的土壤热性质变化波动也最大。(3)土壤温度与土壤热扩散率随降水增加而下降,土壤热扩散率下降主要是土壤含水量较高时,土壤导热率与土壤体积比热容变化的幅度不一致所致;土壤体积比热容与土壤导热率随降水量增加而上升,降水主要通过土壤含水量的变化影响土壤热性质。  相似文献   

9.
应用2009—2013年6—9月山东全省加密自动站资料、地面和探空观测资料,选出了98次区域性强降水过程。统计分析了产生强降水的天气系统特征,把500 hPa天气系统分为6种类型,850~700 hPa天气系统分为5种类型,地面影响系统分为7种类型。统计分析了强降水过程中及前期24个代表大气热力、水汽和动力特征的物理量,给出了最小值、最大值、平均值和各阈值所占百分率。850 hPa 和700 hPa偏南风达到急流(≥12 m·s-1)强度的分别占56.1%和62.2%。对流有效位能(CAPE)≥300 J·kg-1占72.6%。K指数≥30 ℃占86.7%。沙氏指数SI≤0占75.5%。925 hPaθse≥68 ℃占82.2%,850 hPa θse≥66 ℃占74.8%。GPS/MET水汽监测大气可降水量≥55 mm占81.8%。850 hPa和700 hPa的水汽通量平均值分别为8.0和5.9 g·(cm·hPa·s)-1,水汽通量散度平均值分别为-4.6×10-9和-2.7×10-9 g·(hPa·cm2·s)-1。925 hPa、850 hPa和700 hPa的涡度平均值分别为12.6×10-6、12.3×10-6和9×10-6 s-1,散度平均值分别为-5.5×10-6、-3.1×10-6、-3.4×10-6 s-1。850 hPa、700 hPa和500 hPa的垂直速度平均值分别为-4.5×10-4、-7.4×10-4和-11.1×10-4 hPa·s-1。  相似文献   

10.
黄土高原自然植被下垫面陆面过程参数研究   总被引:1,自引:1,他引:0  
李宏宇  张强  史晋森  赵建华  王胜 《气象学报》2012,70(5):1137-1148
利用兰州大学半干旱气候与环境观测站的观测资料,分析了黄土高原自然植被下垫面陆面过程相关物理参数.研究了总体输送系数的不同季节平均日变化和频率分布特征,考察了地表粗糙度的变化趋势以及降水的影响.降水正常年份的总体粗糙度为0.009 m,偏干年份总体粗糙度为0.006 m,月平均粗糙度变化与正常年份相比较为平缓,降水通过增加植被覆盖和生长高度,使地表粗糙度增大.对总体输送系数与粗糙度以及总体理查森数的关系分别进行了讨论,在中性层结下黄土高原地区动力输送作用占主导地位,发现动量总体输送系数和奈曼流动沙丘下垫面很接近,而感热输送系数与戈壁下垫面接近.分析了反照率和太阳高度角以及土壤湿度的关系,并拟合得到以这两个物理量为因子的参数化公式.总体上,黄土高原自然植被下垫面的反照率比敦煌荒漠小,而大于长白山松林下垫面,这与3个地区植被覆盖和土壤质地的不同有关.通过对参数化公式模拟效果的检验,发现低太阳高度角下的反照率对土壤湿度和太阳高度角以外的其他因素敏感,而对应高太阳高度角的反照率受土壤湿度和太阳高度角的控制较强.最后,计算了土壤热传导率和热扩散率等土壤热力参数,相同湿度的热传导率比敦煌荒漠要大,并拟合得到热传导率以土壤湿度为自变量的参数化公式.  相似文献   

11.
土壤热异常对地表能量平衡影响初探   总被引:3,自引:1,他引:3  
郭维栋  孙菽芬 《气象学报》2002,60(6):706-714
将来自土壤深部的热通量引入off line的陆面过程模式 (NCAR—LSM ) ,通过长达 2a的数值试验对比分析了它对各层次土壤温度和地表能量平衡的影响。  在土壤底部引入 5W /m2 的热通量使底层土壤显著升温 ,但升温随着接近表层而迅速衰减。积分 3个月后 ,由地下进入地表的热流量增幅可达 1W/m2 以上 ,并持续增大到 5W /m2 ,地表最大升温约 0 .5K ,同时地表感热、蒸发潜热及长波辐射通量均有 1W /m2 左右的正异常 ;若将土壤热传导系数放大一个量级以加速热量交换 ,则地表升温提高到 1K以上 ,长波辐射增加 3W /m2 以上 ,超过了气溶胶全球平均的辐射效应。结果表明 :一定量值的土壤热异常对地表能量平衡和短期气候变化 (10 -1~ 10 1a)有着不可忽略的影响。同时 ,深入的资料分析、完善的陆面过程模式以及它与大气模式的耦合试验也是亟待进行的相关工作。  相似文献   

12.
Almost three years of continuous measurements taken between January 2001 and May 2003 at the Gaize (or Gerze) automatic weather station (32.30 °N, 84.06 °E, 4420 m), a cold semi-desert site on the western Tibetan Plateau, have been used to study seasonal and annual variations of surface albedo and soil thermal parameters, such as thermal conductivity, thermal capacity and thermal diffusivity, and their relationship to soil moisture content. Most of these parameters undergo dramatic seasonal and annual variations. Surface albedo decreases with increasing soil moisture content, showing the typical exponential relation between surface albedo and soil moisture. Soil thermal conductivity increases as a power function of soil moisture content. The diffusivity first increases with increasing soil moisture, reaching its maximum at about 0.25 (volume per volume), then slowly decreases. Soil thermal capacity is rather stable for a wide range of soil moisture content.  相似文献   

13.
利用青藏高原中部聂荣地区草地下垫面2014年7~8月近地层气象要素梯度观测及湍流观测数据,分析讨论了该地区观测期间的基本气象要素特征、能量平衡特征以及能量输送特征,主要结论如下:(1)向下、向上短波辐射和净辐射日变化规律一致,向下、向上长波辐射日变化平缓。反照率呈"U"型分布,早晚大,中午小,聂荣夏季地表平均反照率为0.20。(2)在夏季白天,聂荣地区净辐射大部分以潜热的形式加热大气。考虑了土壤浅层热储存和垂直运动引起的平流输送后,能量闭合率由0.65提高到0.80,闭合率有显著的提高。(3)在不稳定层结下,动量总体输送系数CD平均值为4.7×10~(-3)和热量总体输送系数CH平均值为3.5×10~(-3);在稳定层结下,CD平均值为3.4×10~(-3),CH平均值为1.8×10~(-3);C_D和C_H在近中性层结下的平均值分别为4.30×10~(-3)和2.39 10~(-3)。  相似文献   

14.
n this paper,using NCEP dataset and the Wei's method,we calculate the exchange of massacross the thermal tropopause during 1998 over the Tibetan Plateau and its surroundings.Theresults indicate that:(1)There is strong air transport from troposphere to stratosphere in summerover the Tibetan Plateau and its surroundings.The air transport reaches the summit in midsummerwith three large value centers among which the Bay of Bengal is the largest and the other two largecenters lie in the east and northwest of the Tibetan Plateau,respectively.In May and October thecross-tropopause mass exchange reaches balance.In other months the mass transport is fromstratosphere to troposphere.(2)As far as the cross-tropopause mass exchange from June toSeptember in 1998 is concerned,the net mass transport is 13.7×10~(18) kg from troposphere tostratosphere,So the area from Tibetan Plateau to the Bay of Bengal is a channel through which airmass gets into stratosphere from troposphere.  相似文献   

15.
夏季亚洲季风区是对流层向平流层物质输送的主要通道,其对平流层水汽的变化有重要贡献。以往的研究表明亚洲季风区向平流层的水汽传输主要在青藏高原及周边地区。本文利用多年平均的逐日ERAi、MERRA再分析数据和微波临边观测仪(Microwave Limb Sounder,MLS)数据,首先对比分析夏季青藏高原周边上空水汽的分布特征,再利用再分析资料分析了对流层—平流层水汽传输的特征。结果表明:青藏高原周边特定的等熵面和对流层顶结构分布有利于水汽向平流层的绝热输送;在南亚高压的东北侧,从青藏高原到中太平洋地区,340~360 K层次存在最为显著的水汽向平流层的纬向等熵绝热输送通道,7~8月平均输送强度可达约7×103 kg s-1。此外,在伊朗高原及南亚高压的西部,350~360 K层次也存在一支水汽向平流层的经向等熵绝热输送通道,但强度相对较弱(约2.5×103 kg s-1)。在青藏高原南侧370~380 K层次存在强的水汽向平流层的非绝热输送,主要由深对流和大尺度上升运动引起,7~8月平均输送强度约0.4×103 kg s-1。落基山以东到大西洋西部,350~360 K层次存在水汽向平流层的纬向等熵绝热输送通道,但强度也弱得多(约2.5×103 kg s-1)。  相似文献   

16.
利用MLS卫星资料和ERA-Interim再分析资料,比较了青藏高原和北美夏季臭氧谷的垂直结构和形成机制。结果如下:青藏高原夏季臭氧谷在垂直方向上存在两个低值中心,一个中心位于对流层顶附近,强度约为-15 DU,形成原因主要为水平幅散,另一个中心位于上平流层,强度约为-1 DU,形成原因可能为光化学反应参与的氯自由基的催化损耗。北美夏季臭氧谷仅存在一个低值中心,位于对流层顶附近,该中心强度约为-5 DU,其形成的主要原因是水平辐散。  相似文献   

17.
The characteristics of net radiation (Rn)(0.3--10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn reached a minimum during the winter period followed by an increase until May and then a decline until January. This variation is consistent with solar activity. The annual mean daily total Rn values were 0.92 MJ m-2 d-1 and 0.66 MJ m-2d-1 in Lhasa and Haibei, respectively. A relationship between Rn and broadband solar radiation (Rs) was demonstrated by a good linear correlation at the two sites. Rn can be an accurate estimate from Rs. The estimated Rn values were similar to the observed values, and the relative deviations between the estimates and measurements of Rn were 2.8% and 3.8% in Lhasa and Haibei, respectively. The application of the Rn estimating model to other locations showed that it could provide acceptable estimated Rn values from the Rs data. Furthermore, we analyzed the influence of clouds on Rn by different clear index (Ks), defined as the ratio of Rs to the extraterrestrial solar irradiance on a horizontal surface. The results indicate that more accurate results are associated with increased cloudy conditions. The influence of the albedo was also considered, but its inclusion in the model resulted in only a slight improvement. Because surface albedo is not usually measured, an expression based solely on global solar radiation could be of more extensive use.  相似文献   

18.
利用最新的高时空分辨率(1 km、1 h)的中国气象局高分辨率陆面数据同化系统(HRCLDAS-V1.0)大气近地面强迫资料,驱动由NCAR发展的通用陆面模式(CLM),对青藏高原地区2015年1月1日至9月30日的土壤湿度开展了模拟研究。结果表明模拟得到的高时空分辨率(1 km、1 h)土壤湿度能够体现出青藏高原地区从东南向西北逐渐变低的空间分布特征,较好地表现出各层土壤湿度的时间变化特征,6~9月土壤湿度波动较大,1~5月波动较平缓,上层土壤湿度变幅较大,深层变化较平缓。0~5 cm、0~10 cm和10~40 cm深度土壤湿度模拟结果与观测值的相关系数均在0.8以上,其中0~5 cm土层的相关系数达到0.92,各层土壤湿度观测值与模拟值的均方根误差变化则相反,3个土层土壤湿度模拟结果与观测值的偏差均小于0.04 mm3 mm-3,但模式对于研究时段土壤湿度变化的低值有高估现象,且模拟能力随着土层深度的加深而减弱。  相似文献   

19.
土壤热异常影响地表能量平衡的个例分析和数值模拟   总被引:6,自引:0,他引:6  
The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are revealed through using an off-line land surface model with a reasonable soil thermal forcing at the bottom of the soil layer.In the first experiment, the given heat flux is 5 W m-2 at the bottom of the soil layer (in depth of 6.3 m)for 3 months, while only a positive ground temperature anomaly of 0.06℃ can be found compared to the control run. The anomaly, however, could reach 0.65℃ if the soil thermal conductivity was one order of magnitude larger. It could be even as large as 0.81℃ assuming the heat flux at bottom is 10 W m-2. Meanwhile, an increase of about 10 W m-2 was detected both for heat flux in soil and sensible heat on land surface, which is not neglectable to the short-term climate change. The results show that considerable response in land surface energy budget could be expected when the soil thermal forcing reaches a certain spatial-tem poral scale. Therefore, land surface models should not ignore the upward heat flux from the bottom of the soil layer. Moreover, integration for a longer period of time and coupled land-atmosphere model are also necessary for the better understanding of this issue.  相似文献   

20.
Black carbon (BC) concentrations were measured in the southeast (SE) Tibetan Plateau along the valley of the Yarlung Tsangpo River during winter (between November, 2008 and January, 2009). The measured mean concentration (0.75 μg m−3) is significantly higher than the concentrations (0.004–0.34 μg m−3) measured in background and remote regions of the globe, indicating that Tibetan glaciers are contaminated by BC particles in the Plateau. Because BC particles play important roles for the climate in the Tibetan Plateau, the sources and causes of the BC contamination need to be understood and investigated. In this study, a mesocale dynamical model (WRF) with BC particle modules is applied for analyzing the measurement. The analysis suggests that the major sources for the contamination in the SE Plateau were mainly from the BC emissions in eastern Indian and Bangladesh. Because of the west prevailing winds, the heavy emissions in China had no significant effects on the SE Plateau in winter. Usually, the high altitude of the Himalayas acts a physical wall, inhibiting the transport of BC particles across the mountains to the plateau. This study, however, finds that the Yarlung Tsangpo River valley causes a 'leaking wall', whereby under certain meteorological conditions, BC particles are being transported up onto the glacier. This too causes variability of BC concentrations (ranging from 0.3 to 1.5 μg m−3) in a time scale of a few days. The analysis of the variability suggests that the “leaking wall” effect cannot occur when the prevailing winds were northwest winds, during which the BC transport along the valley of the Yarlung Tsangpo River was obstructed. As a result, large variability of BC concentration was observed due to the change of prevailing wind directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号