首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
用云团强中心附近最大亮温梯度区判别强降水   总被引:1,自引:2,他引:1  
用1996~2001年5~7月GMS红外云图资料,分析了GMS红外云图云顶温度与对应的地面雨量站的1 h雨量的关系,结果表明云团降水最强的区域既不是出现在云顶温度最低的区域,也不是出现在云顶温度梯度最大的区域,而是出现在云团强中心附近的云顶最大温度梯度区移动方向大约4个像素的地方.同时采用回归分析方法统计了云团最强降水与最低云顶亮温和发展率等因子的关系,然后根据云团强中心附近的最大亮温梯度区的移动来估计云团未来1 h强降水可能的强度与落区.  相似文献   

2.
浙江省降水云系红外云图特征及其与降水量的关系   总被引:2,自引:0,他引:2  
用2000~2003年GMS红外云图资料,统计分析了影响浙江省降水系统的红外云图特征及其与地面1 h降水量的关系。结果表明:降水云团的云顶亮温、1 h云顶亮温差、云顶亮温梯度和云团移动速度与地面降水强度的对应关系是非线性的,并且随季节的变化它们的关系又有明显变化;随着云顶亮温的降低,1 h降水量降水强度逐渐增大,出现强降水的机率也明显增多;浙江省内易出现2.0 mm/h(中雨)7、.0 mm/h(大雨)、15.0 mm/h(暴雨)强降水的云顶亮温指标分别为-30℃、-36℃、-41℃。  相似文献   

3.
胡波  杜惠良  滕卫平  石蓉蓉 《气象》2009,35(9):104-111
通过分析2005-2008年影响浙江的梅汛期强降水云团特征,将云团分为偏北型、居中型和偏南型,研究这三种类型云团云顶亮温与地面1小时强降水极值和10mm/h以上降水覆盖面积关系,结果表明偏南型和偏北型云团有较多相似特征,而居中型云团较其他两种云团则有较多相反特征.通过分析1小时强降水相对于云团中心移动路径的落区,指出梅汛期云顶1小时变温和亮温梯度与地面1小时强降水落区无明显配对模型.随后利用天气形势场资料,分析强降水云团与环境要素场的关系,指出云顶亮温的宏观特征与中高层的垂直速度、水汽通量密切相关,最后尝试建立三种类型强降水云团成熟阶段云顶亮温和地面降水人工神经网络预报方程,给预报员提供参考.  相似文献   

4.
2006年6月10日浙江飑线FY-2C卫星云图特征   总被引:1,自引:1,他引:1  
洪毅  李玉柱  陈智源  李新芳 《气象》2007,33(9):47-51
利用FY-2C静止气象卫星云图和中尺度加密地面气象监测资料,采用Weiss-Smith方法、云顶亮温分层、多谱组合等定量分析技术对2006年6月10日发生在浙江中北部地区的一次冰雹和雷雨大风天气的飑线过程进行连续监测和对流云识别分析。FY-2C卫星云图定量分析结果表明这次飑线过程对流最旺盛期TBB低于230K(-44℃);长波红外分裂窗双谱组合Tc≤-4的低值区与强风暴天气影响区域相对应,Tc≤-7低值中心与强雷达回波区相对应;强对流天气区域与分布在沿对流云团前进方向的TBB梯度最大区域有很好的对应关系,强风暴天气发生区的移动路径与TV正梯度最大区域的移动路径相似。  相似文献   

5.
利用常规观测资料、多普勒天气雷达资料以及NCEP/NCAR再分析资料等,对2017年5月11日和6月5日发生在湖南的两次飑线过程(以下分别简称"5·11"飑线过程和"6·5"飑线过程)进行了对比分析。结果表明:(1)两次过程均发生在低层暖平流强迫背景下,"5·11"飑线过程发生前冷平流较明显,"6·5"飑线过程发生前暖湿气流更强盛,副热带高压位置不同导致后一过程水汽条件更好;(2)"5·11"飑线过程中层更干,0℃度层高度更低,有利于出现较大范围雷暴大风和小冰雹,而"6·5"飑线过程自由对流高度(LFC)相对较低、低层湿度更大,则易产生更大强度的短时降水;(3)"5·11"飑线过程产生大范围雷暴大风的环境条件明显好于"6·5"飑线过程,但后一过程因地面倒槽发展、暖湿气流更强、低涡东移使大气对流不稳定增大等原因,更有利于形成局地致灾性大风;(4)"6·5"飑线过程中气旋少且维持时间短,以及垂直风廓线产品(VWP)、径向速度图上雷暴大风特征不够典型,其预警难度更大。  相似文献   

6.
利用2019-2020年风云四号气象卫星A星(FY-4A)多通道扫描成像辐射计(AGRI)提供的云顶数据和地基全球闪电定位网(WWLLN)提供的闪电数据,结合MICAPS气象观测站和海洋浮标记录的极大风数据,研究南海区域(5°~30°N,105°~125°E)71次雷暴大风过程的时空分布及其闪电和对流活动特征。结果表明:观测站记录的雷暴大风主要分布在南海北部;雷暴大风主要发生在5-9月,峰值出现在8月,3月发生次数最少;雷暴大风主要发生在07:00-12:00(北京时,下同),10:00频次最高,午后频次减少。雷暴大风闪电密度的极大值分布在广东南部近海区域,且闪电集中发生在距离观测站40~80 km半径范围内;孤立雷暴大风过程首次闪电跃变的发生时刻相对大风峰值时刻超前30 min至2 min。在对流特征方面,在雷暴大风风速峰值时刻,观测站处的云顶亮温为200~220 K,云顶高度为12.5~15 km。孤立雷暴大风云团云顶亮温最低值(即最强对流发生位置)与大风观测站点的距离平均为77.2 km,云顶亮温平均相差2.6 K。  相似文献   

7.
利用Himawari-8卫星红外、水汽云图和FY-2E卫星可见光云图资料,以及多普勒天气雷达拼图和常规气象站、自动气象站、高空观测资料,对2017年9月21日发生在山西境内的一次飑线天气过程进行云图特征及维持机制分析。结果表明:(1)蒙古冷涡是本次飑线过程的大尺度天气影响系统,地面冷锋东移至不稳定潜势区触发了飑线云系的生成;高低空系统配置结构的转变及地面中尺度高压外流冷空气与环境风场形成的中尺度气旋和辐合线,是飑线发展和维持的机制;对流云团在地面冷锋与850 hPa切变线之间合并发展,地面中尺度高压与低压的发展促使气压梯度增大,导致飑线增强,是飑线过境时地面大风形成的原因。(2)初生阶段,飑线形成于云顶亮温低值区后侧梯度大值区、云顶纹理粗糙区、干湿边界偏湿区一侧,冷云盖略超前于飑线;发展阶段,飑线回波在云顶亮温低值区加强,并沿着亮温低值中心移动的方向移动;成熟阶段,飑线雷达回波与云顶亮温低值区重合。(3)弧状云线、上冲云顶和对流云带一侧的暗影是对流云团加强发展的前期征兆。  相似文献   

8.
利用MICAPS资料、NCEP1°×1°逐6 h再分析数据以及FY-2G卫星、安康雷达探测等资料,对2019年6月2日发生在秦巴山区的一次罕见雷暴大风天气进行成因综合分析。结果表明:2日陕南中东部地区存在有利于强对流风暴发生和发展的热力不稳定条件;地面图上,傍晚前后从关中向陕南发展移动的冷池触发了本次雷暴大风天气;过程发生时,云图上中尺度对流系统云系逐渐东移南压,云顶亮温梯度最大区域和地面冷池前方辐合线位置基本一致;雷暴大风发生时低层雷达速度图上有显著的大风速核、明显的中层径向辐合和低层辐散及其雷达强回波质心的下降,这些都为雷暴大风天气的预报预警提供了一定的指示。  相似文献   

9.
利用FY-2E卫星数据获取的强对流云团面积、重心、长短轴比、重心与形心距离、移动速度、移动角度和最低亮温等属性的变化可作为动态特征,利用慢特征分析方法提取云团中具有一定连续性和稳定性的动态特征对强对流云团不同阶段进行识别和追踪.结果表明,动态特征与强对流云团的不同发展阶段具有很好的对应关系:在初生阶段,云团的移动方向和速度不稳定,但是面积呈现出缓慢增长态势,云顶亮温缓慢下降,此时云团的慢特征为面积和云顶亮温;在成熟阶段,云团的移动路径趋于稳定,云顶亮温达到最低,云团重心和形心基本重合;在消散阶段,存在云团分裂和云团的重心与形心分离特征.云团长短轴比的变化与云团最低亮温的变化趋势一致,移速缓慢的对流云团更容易造成集中强降水,快速移动的对流云团大多造成地面大风.  相似文献   

10.
FY2卫星云图分析系统在热带气旋北冕过程中的应用   总被引:1,自引:0,他引:1  
何立  覃丹宇  黄小燕  徐建文 《气象》2010,36(9):21-28
利用FY2卫星云图分析系统的各项分析功能,结合常规观测资料对热带气旋北冕的天气形势、云图演变以及路径变化、风雨情况等进行了分析。结果表明,副热带高压摆动,中纬度西风小槽东移,低层西南气流加强和减弱是"北冕"出现两次北抬和一次南折的直接原因;对流云团的发展和减弱对应低层西南气流的加强和减弱;强降水与云顶亮温的最低值中心及强度密切相关,而云团面积和云顶亮温与强降水也有很好的对应关系,其中发展的云系是强降水发生的信号。FY2卫星云图分析系统较好地分析了"北冕"整个过程的变化特点,对于短时临近预报有较好的辅助作用。  相似文献   

11.
新疆降雹云团的特征分析   总被引:2,自引:0,他引:2  
普查1998-2001年4-8月的资料,得到全疆438个降雹云团。2000年降雹云团出现最多,按尺度大小将降雹云团分为雷暴云、对流云、中尺度对流系统、冷云核、系统云系云区有云团边缘6类。强以流云团是冰雹云的主体。新疆降雹云团尺度小、形状不规则、云顶温度较高。  相似文献   

12.
云南两次中尺度对流雷暴系统演变和地闪特征   总被引:3,自引:2,他引:1       下载免费PDF全文
在利用NCEP/NCAR再分析资料诊断分析2010年9月21—23日中尺度对流雷暴系统形成的环流背景基础上,通过云南省闪电定位系统地闪监测资料和FY-2E卫星云图资料的同步叠加, 分析两个中尺度雷暴系统的演变和地闪特征。结果表明:台风凡亚比 (1011) 西行减弱的热带低压为中尺度对流雷暴系统提供有利的暖湿和抬升动力环流背景,促使中尺度弧状对流云带、中尺度雷暴云团和中尺度对流复合体生成和发展。雷暴云团结构和地闪活动空间分布不均匀并随时间变化,且正、负地闪频数与云顶亮温 (TBB) 相关,当TBB降低和等值线密度变大,雷暴云团发展,低TBB中心偏于云团的前部云区,负地闪频数剧增;当TBB达最低值时,雷暴云团成熟,负地闪频数达峰值,正地闪出现;当TBB升高且等值线密度变小时,雷暴云团减弱,低TBB中心靠近云团中心,负地闪频数迅速减小,正地闪频数达到峰值;密集的负地闪出现在雷暴云团前部大的TBB梯度区和TBB不大于-56℃的低值中心附近,正地闪分散在TBB不大于-56℃的低值中心附近,偏于负地闪区域后部发生。  相似文献   

13.
塔里木盆地周边地区冰雹云特征分析   总被引:3,自引:0,他引:3  
对1998~2001年6~9月在塔里木盆地普查得到105个降雹云团进行分类,按尺度大小分为雷暴云、对流云、中尺度对流系统、冷云核和系统云系云区5类。塔里木盆地2000年降雹云团出现最多,半数以上出现在5月和6月。塔里木盆地降雹云团尺度小、形状不规则、云顶温度较高。  相似文献   

14.
2018年5月17—18日, 湖北省一次连续强风暴过程中先后出现了不同类型的强对流天气。利用FY-4A卫星、雷达和地基闪电观测等资料, 对相似环境背景下17日夜间鄂西北强对流(第1阶段, 下同)和18日上午鄂东强对流(第2阶段, 下同)的环境背景和天气系统特征等差异进行分析, 提炼卫星雷达和闪电资料对分类强对流的预报依据。(1)此次连续强风暴是副高稳定维持, 西南涡东移, 暖式切变线触发形成的, 强对流出现在副高外围西南气流和低涡东侧的辐合区中, 第1阶段短波快速东移后中高层转为冷平流, 上干下湿的层结利于冰雹和大风出现, 第2阶段则处在槽前暖湿气流中, 湿层深厚, 探空对流有效位能CAPE中等强度, 出现持续性强降水的概率较大。地面中尺度涡旋促使强对流发展维持, 18日冷空气南下是第2阶段雷电密集的主要原因。(2)鄂西北强对流正闪比例较大, 正闪峰值时刻和降雹时刻几乎一致, 零星地闪分布在强回波外侧35~50 dBZ回波中, ≥60 dBZ强回波中并未观测到地闪, 鄂东强对流闪电频次较多, 以负闪为主, 密集的负闪分布在35~55dBZ强回波区, 零星正闪和强回波外围25~35 dBZ层状云对应, 以上雷达特征对分类强对流预警都有很好的指示意义。(3) FY-4A闪电成像仪资料LMI、云顶亮温TBB低值区和二维地闪探测位置吻合, LMI总闪和二维地闪随TBB低值中心移动, 冰雹和对流性大风的TBB更低, 分布在230 K以下, 强降水则在250~270 K。   相似文献   

15.
内蒙古典型暴雨过程的中尺度雨团观测分析   总被引:3,自引:1,他引:2       下载免费PDF全文
利用FY-2E逐时云顶黑体亮温资料 (TBB)、闪电定位资料、自动气象站资料和逐时降水资料,对2009—2013年6—8月内蒙古7例暴雨天气过程的中尺度雨团特征进行分析。结果表明:内蒙古暴雨的降水强度在1~3 h即可达到暴雨或大暴雨量级,中尺度雨团活动是内蒙古暴雨过程形成原因,而80%雨团活动是中尺度对流系统 (MCS) 造成的。MCS内TBB不超过-52℃冷云区和地闪密度大值中心对雨团强度和发展具有重要的指示作用,冷锋云系中MCS造成的雨团多原地生成和消亡,TBB不超过-52℃冷云区面积小,维持时间为2~8 h,地闪密度增长缓慢而且发生频次低;冷涡云系中雨团跳跃式出现在MCS冷云区或冷空气流入一侧,出现TBB不超过-62℃冷云区,雨团出现频次高,持续出现时间可长达24 h,地闪密度增长迅速且发生频次高。7次暴雨过程中约有60%雨团伴有地闪活动,地闪密度达到最大值时刻预示未来1~3 h最强雨团出现和MCS发展到成熟。地面加密风场中尺度辐合线先于MCS和雨团出现,中尺度辐合线造成的局地辐合可作为MCS发展的启动机制。  相似文献   

16.
该文利用常规气象观测资料、NCEP再分析资料以及卫星和雷达资料,通过对环流背景、云图、雷达以及物理量分析研究,对2020年6月30日贵州特大暴雨过程进行诊断分析,发现此次特大暴雨过程是在高空多短波槽活动、中层弱冷空气的入侵、高空急流和低层切变线长期维持以及西南暖湿气流的持续性输送共同影响下形成的。此次MCC对流云团生成于毕节市威宁县附近,在MCC的初始阶段,对流云团由块状向椭圆形发展,冷云罩面积逐步增大,云顶亮温中心不断降低;成熟阶段由椭圆形逐步扩散为多边形,云顶亮温中心维持在-80℃以下;消亡阶段冷云罩面积和云顶亮温绝对值迅速减小。逐小时短时强降雨站数与冷云盖面积有很好的对应关系,在形成、成熟、消亡3个阶段分别呈现逐步上升、明显上升和迅速减小的趋势;最大小时雨量在成熟阶段与最低云顶亮温有较好的对应关系。此次特大暴雨过程中强回波基本集中在4 km以下,中低层越靠近地面回波越强,强回波接地,质心低。初始阶段强回波强度强,移速快,但生命史短,呈现单峰值分布;成熟阶段的强回波范围大,持续时间长,移速慢,呈现多峰值分布。TI≥44℃的大值区长期维持,低层的暖平流和上升气流以及正涡度辐合,配合高层的冷平流和下沉气流以及负涡度辐散,为此次特大暴雨过程提供了有利的能量和动力条件。  相似文献   

17.
Dust storms commonly occur during the pre-monsoon (summer) season in north and northwest parts of India. Characteristics of dust events of the pressure gradient type are well understood. However, comprehensive studies on mechanism of convective dust storms in India are few. A convective dust storm which occurred on 21 April 2010 in association with a western disturbance over North India was hence studied. In the absence of in situ data, we used available satellite data to study the event. Dust storm that occurred on 20 April 2010 on the surface of the Thar Desert transported dust to northern and northwestern parts of India (Rajasthan, Haryana, Delhi and some parts of Uttar Pradesh). This formed a background of aerosols that affected the thunderstorm formed in association with western disturbance and the strong updraft in the thunderstorm carried the dust lingering in the atmosphere to higher altitudes. Large amount of aerosols carried to higher altitude suppressed the chance of precipitation by affecting the cloud top microphysics. Enhancement in evaporation due to an increase in aerosol concentration and strong downdrafts during dissipation of the thunderstorm resulted in emission of dust particles which led to the convective dust event of 21 April 2010.  相似文献   

18.
杨磊  才奎志  孙丽  陈宇  张岳 《湖北气象》2020,39(2):125-135
应用葵花8号卫星资料,结合NCEP FNL再分析、GNSS遥感水汽、风廓线雷达、全国智能网格实况融合分析资料,对2017年7月14日和2018年8月7日沈阳两次暴雨过程(分别简称过程Ⅰ和过程Ⅱ)中对流云特征进行了比较分析,重点探讨了对流云的触发维持机制与影响降水特征差异的因素。结果表明:(1)两次过程分别为局地突发暴雨和区域性极端暴雨,沈阳市区暴雨均由两个对流云团引发,对流云团合并使得降水持续。过程Ⅱ云团合并发生在其移动方向的后侧,具有后向传播特征,合并云团沿其长轴方向移动影响沈阳市,使降水时间延长。(2)在降水前至降水初期,过程Ⅰ对流云顶和水汽层顶快速上升且云顶迅速超过水汽层顶,而过程Ⅱ亮温下降缓慢。短时强降水发生前红外和水汽亮温同步快速降至-60℃,可作为提前预判对流云团产生短时强降水的参考指标。10 min雨量大于10 mm的对流云云顶集中分布在红外亮温低于-55℃、亮温差为-5~0℃的范围。(3)两次过程中,沈阳市分别位于东北冷涡后部和副热带高压北缘。过程Ⅰ,探空曲线呈“X”型,CAPE高达2584 J·kg^-1,造成对流云深厚,云底以下干层导致雨滴蒸发,使降水强度减弱,该过程高强度降水仅发生在对流云团合并加强阶段。过程Ⅱ,云底到地面湿层明显,保证了雨滴降至地面,产生相同量级降水的云团的TBB比过程Ⅰ高。(4)强降水发生前,地面风场存在明显辐合,当大气可降水量2 h内跃增8 mm时,站点出现强降水;局地水汽跃增可能是低空西南气流偏南分量增大或偏北冷空气侵入到暖湿空气中所致。  相似文献   

19.
利用FY-2C红外卫星云图图像和TBB资料,结合地面常规气象观测资料、地面和高空天气图及物理量资料等,运用天气分析诊断方法,对2008年6月28日—7月3日发生在西藏中东部地区的一次强降水雷暴过程的发生、发展和演变的环流特征、卫星云图特征和物理量场特征进行分析,并试图建立预报标准,形成预报思路和预报概念模型。结果表明:本次过程在FY-2C卫星云图、大尺度环流形势场和物理量场上都有明显的特征。TBB低值区、水汽条件、垂直散度场配置、高温高湿、层结不稳定是预报强雷暴天气的着眼点。TBB低值带与强降水雷暴的落区有很好的对应关系。暴雨的发生区往往是TBB的相对低值中心,雨带摆动及强度与TBB低值带的摆动和强度相一致。TBB≤-33℃,应注意强降水的预报。TBB≤-50℃,可能有暴雨出现。TBB≤-60℃,可能出现大暴雨并伴有雷暴天气。TBB≤-33℃的范围越大、强度越强,降水持续的时间越长、降水强度越强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号