首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
As the majority of the world’s population is living in urban environments, there is growing interest in studying local urban climates. In this paper, for the first time, the long-term trends (31–162 years) of temperature change have been analyzed for the Greater Toronto Area (GTA). Annual and seasonal time series for a number of urban, suburban, and rural weather stations are considered. Non-parametric statistical techniques such as Mann–Kendall test and Theil-Sen slope estimation are used primarily for the assessing of the significance and detection of trends, and the sequential Mann test is used to detect any abrupt climate change. Statistically significant trends for annual mean and minimum temperatures are detected for almost all stations in the GTA. Winter is found to be the most coherent season contributing substantially to the increase in annual minimum temperature. The analyses of the abrupt changes in temperature suggest that the beginning of the increasing trend in Toronto started after the 1920s and then continued to increase to the 1960s. For all stations, there is a significant increase of annual and seasonal (particularly winter) temperatures after the 1980s. In terms of the linkage between urbanization and spatiotemporal thermal patterns, significant linear trends in annual mean and minimum temperature are detected for the period of 1878–1978 for the urban station, Toronto, while for the rural counterparts, the trends are not significant. Also, for all stations in the GTA that are situated in all directions except south of Toronto, substantial temperature change is detected for the periods of 1970–2000 and 1989–2000. It is concluded that the urbanization in the GTA has significantly contributed to the increase of the annual mean temperatures during the past three decades. In addition to urbanization, the influence of local climate, topography, and larger scale warming are incorporated in the analysis of the trends.  相似文献   

2.
Trends in air temperature and precipitation data are investigated for linkages to global warming and climate change. After checking for serial correlation with trend-free pre-whitening procedure, the Mann–Kendall test is used to detect monotonic trends and the Mann–Whitney test is used for trend step change. The case study is Maharlo watershed, Southwestern Iran, representing a semi-arid environment. Data are for the 1951–2011 period, from four temperature sites and seven precipitation sites. A homogeneity test investigates regional similarity of the time series data. The results include mean annual, mean annual maximum and minimum and seasonal analysis of air temperature and precipitation data. Mean annual temperature results indicate an increasing trend, while a non-significant trend in precipitation is observed in all the stations. Furthermore, significant phase change was detected in mean annual air temperature trend of Shiraz station in 1977, indicating decreasing trend during 1951–1976 and increasing trend during 1977–2011. The annual precipitation analysis for Shiraz shows a non-significant decrease during 1951–1976 and 1977–2011. The result of homogeneity test reveals that the studied stations form one homogeneous region. While air temperature trends appear as regional linkage to global warming/global climate change, more definite outcome requires analysis of longer time series data on precipitation and air temperature.  相似文献   

3.
The growing interest in urbanization problems is stimulating detailed studies of their effects on local climate change in the developed world. The absence of such studies in developing countries is restricting many decisions to be made and applied by policymakers. In one developing country, Turkey, results of the study of four urban stations and their neighboring rural sites for the 1951-1990 time period reveal that there is a shift towards the warmer side in the frequency distributions of daily minimum and 21.00 hr temperature difference series. This shift is an indication of urban heat island. The maximum urban heat island intensity trend that is obtained from the temperature differences database agrees well with Oke's (1973) formula for European cities. Seasonal analysis of individual 21.00 hr temperature series suggests that the regional warming is strongest in spring and weakest in autumn and winter. Urban warming is detected to be more or less equally distributed over the year wi th a slight increase in the autumn months. The Mann-Kendall trend test is applied to the temperature difference series, and the urban heat island effect is found to be significant in all urban sites. On the other hand, almost no significant urban effect on precipitation can be detected.  相似文献   

4.
城市热岛强度变化对安徽省气温序列的影响   总被引:1,自引:0,他引:1  
根据安徽省81个气象台站的资料研究了其气温序列特点,并选取了其中46个台站,划分为城市站、乡村站、国家基本/基准站等类别,对1966~2005年期间平均、最高、最低气温的年、季变化进行了分析比较.结果表明:两个时段各类型台站3项气温的增温率、热岛增温率、热岛增温贡献率均表现为城市站最大,国家基本/基准站次之,乡村站最小...  相似文献   

5.
周雅清  任国玉 《高原气象》2009,28(5):1158-1166
利用华北地区255个一般站和国家基本、 基准站1961\_2000年的实测资料, 经过质量检验和均一性订正后, 将所有台站根据人口和台站地理位置分为5个类别, 分析了这5个类别台站和国家基本、 基准站地面平均气温、 最高、 最低气温的年和季节变化趋势以及城市化影响。结果表明: 华北全部台站的年平均气温、 最高、 最低气温均呈增加趋势, 且以最低气温上升最为明显, 导致年平均日较差呈现明显下降。就城市化影响而言, 平均气温、 最低气温变化趋势中城市热岛效应加强因素的影响明显, 但城市化对最高气温趋势影响微弱, 个别台站和季节甚至可能造成降温。在国家基本、 基准站观测的年平均气温和年平均最低气温上升趋势中, 城市化造成的增温分别为0.11℃·(10a)-1和0.20℃·(10a)-1, 对全部增温的贡献率分别达39.3%和52.6%。各类台站的四季平均气温和最低气温序列中城市化影响均造成增温。城市化增温以冬季为最大, 夏季最小。城市化还导致乡村站以外的各类台站日较差减小, 近40年华北地区国家基本、 基准站年平均和秋、 冬季平均气温日较差明显下降均由城市化影响造成的。  相似文献   

6.
With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961–2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen’s Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3–62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.  相似文献   

7.
武汉市城市热岛强度非对称性变化   总被引:15,自引:0,他引:15  
利用武汉市区气象站及其周边4个县气象站1960-2005年的气温资料,计算了46 a及分时段的季节和年平均气温、平均最高和最低气温倾向率,城市热岛强度倾向率及其贡献率。结果表明:46 a来,城区和郊区的平均气温均以上升趋势为主,最低气温增幅最大,最高气温增幅最小,甚至下降;冬季增幅最快,夏季增幅最慢,甚至下降,这是第一类非对称性。 城市热岛效应也存在增强趋势,以年平均、最低和最高气温表示的城市热岛强度倾向率分别为0.235℃/10 a、0.425℃/10 a和0.034℃/10 a,热岛效应贡献率分别达到60.4%、67.7%和21.8%,这是第二类非对称性。 46 a来的增温和城市热岛强度加强主要是最近23 a快速增温所致,进入本世纪增温进一步加剧。 摘要 计算了武汉市气象站、周边4县气象站平均的1960~2005年间以及前后两半时段四季和年平均、最高、最低气温倾向率,城市热岛强度倾向率和贡献率。结果表明:1)46年来,城区和郊区的平均气温均以增趋势为主,平均气温倾向率为正,最低气温增幅最大,最高气温增幅最小甚至下降,冬季增幅最快,夏季增幅最慢甚至下降,这是第一类非对称性;2)城市热岛效应也存在增趋势,以年平均、最低、最高气温表示的城市热岛强度倾向率分别为0.235、0.425、0.034 ℃/10a,热岛效应贡献率分别达到60.4%、67.7%、21.8%,这是第二类非对称性,3)46年来的增温和城市热岛强度加强主要是后23年快速增温所致,前23年气温变化不明显。武汉市气象站气温资料严重地保留着城市化影响,建议尽快迁站。 关键词 城市热岛强度 最高气温 最低气温 非对称性变化  相似文献   

8.
Gridded temperature data are necessary to run ecological models at regional scales for climate impact studies and have been generated by spatially interpolating measured values at synoptic stations. Because there are few synoptic stations with long-term records in rural areas in Korea, data from urban stations have been used for this purpose. Due to the overlapping of the rapid urbanization-industrialization period with the global warming era in Korea, climate data from these urbanized areas might be contaminated with urban heat island effect. This study was conducted to differentiate urbanization and regional climate change effects on apparent temperature change. Monthly averages of daily minimum, maximum, and mean temperature at 14 synoptic stations were prepared for 1951-1980 (past normal) and 1971-2000 (current normal) periods, respectively.Differences in two temperature normals were regressed to the logarithm of the population increase at 14 corresponding cities from 1966 to 1985. The regression equations were used to determine potential effects of urbanization and to extract the net contribution of regional climate change to the apparent temperature change. According to the model calculation, urbanization effect was common in all months except April. Up to 0.5° warming of nighttime temperature was induced by urbanization in the current normal period compared with the past normal period. There was little effect of regional climate change on local warming in the warm season (May through November). The cool season was warmed mainly by regionally increased daytime temperature. The results could be used to remove urbanization effects embedded in raw data, helping restore unbiased rural temperature trends in South Korea.  相似文献   

9.
In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960–2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960–1986 and 1987–2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide significant power at the 4-year period, which are mainly found during 1970–1980 and after 1992.  相似文献   

10.
Many studies have shown evidence for significant changes in surface climate in different regions of the world and during different seasons over the past 100 years. Based on daily temperature and precipitation data from 720 climate stations in China, cluster analysis was used to identify regions in China that have experienced similar changes in the seasonal cycle of temperature and precipitation during the 1971-2000 climate normal period. Differences in 11-day averages of daily mean temperature and total precipitation between the first (1971-1985) and second (1986-2000) halves of the record were analyzed using the Mann- Whitney U test and the global κ-means clustering algorithm. Results show that most parts of China experienced significant increases in temperature between the two periods, especially in winter, although some of this warming may be attributable to the urban heat island effect in large cities. Most of western China experienced more precipitation in 1986-2000, while precipitation decreased in the Yellow River valley. Changes in the summer monsoon were also evident, with decreases in precipitation during the onset and decay phases, and increases during the wettest period.  相似文献   

11.
城市化对天津近60年平均温度和极端温度事件的增暖影响   总被引:1,自引:0,他引:1  
基于天津均一化的逐日平均、最低和最高气温观测数据,以及利用天津区域自动站定时观测气温整合数据对城乡台站的划分结果,研究分析了天津地区1959~2000年、1959~2005年、1959~2012年、1959~2017年4个时段平均温度和极端温度事件的趋势特点及其变化幅度。结果表明,天津地区的气温增暖是毋庸置疑的,4个时段年平均气温增加幅度分别达1.35°C、1.65°C、1.71°C、2.05°C,其中,冬季上升幅度相对最大,分别为2.45°C、2.82°C、2.55°C、2.86°C。城市化导致的年平均气温增暖幅度在逐年增强,4个时段的增暖贡献分别达3.73%、3.71%、4.73%、5.17%,但对于冬季来说,乡村区域的增暖趋势幅度明显大于城市区域,这一特点在年和季节极端冷事件(TN10p、TX10p)和极端最低气温事件(TNn)中有明显表现。因此,在时间尺度上,城市化对天津地区的平均和极端温度增暖影响仍然是较为显著的,并且乡村区域的城市化进程相对城市区域更为突出。  相似文献   

12.
Abstract

Trends in Canadian temperature and precipitation during the 20th century are analyzed using recently updated and adjusted station data. Six elements, maximum, minimum and mean temperatures along with diurnal temperature range (DTR), precipitation totals and ratio of snowfall to total precipitation are investigated. Anomalies from the 1961–1990 reference period were first obtained at individual stations, and were then used to generate gridded datasets for subsequent trend analyses. Trends were computed for 1900–1998 for southern Canada (south of 60°N), and separately for 1950–1998 for the entire country, due to insufficient data in the high arctic prior to the 1950s.

From 1900–1998, the annual mean temperature has increased between 0.5 and 1.5°C in the south. The warming is greater in minimum temperature than in maximum temperature in the first half of the century, resulting in a decrease of DTR. The greatest warming occurred in the west, with statistically significant increases mostly seen during spring and summer periods. Annual precipitation has also increased from 5% to 35% in southern Canada over the same period. In general, the ratio of snowfall to total precipitation has been increasing due mostly to the increase in winter precipitation which generally falls as snow and an increase of ratio in autumn. Negative trends were identified in some southern regions during spring. From 1950–1998, the pattern of temperature change is distinct: warming in the south and west and cooling in the northeast, with similar magnitudes in both maximum and minimum temperatures. This pattern is mostly evident in winter and spring. Across Canada, precipitation has increased by 5% to 35%, with significant negative trends found in southern regions during winter. Overall, the ratio of snowfall to total precipitation has increased, with significant negative trends occurring mostly in southern Canada during spring.

Indices of abnormal climate conditions are also examined. These indices were defined as areas of Canada for 1950–1998, or southern Canada for 1900–1998, with temperature or precipitation anomalies above the 66th or below the 34th percentiles in their relevant time series. These confirmed the above findings and showed that climate has been becoming gradually wetter and warmer in southern Canada throughout the entire century, and in all of Canada during the latter half of the century.  相似文献   

13.
当前的地面气候观测资料普遍存在非气候性因素导致的非均一性,对气候变化监测和研究结论可靠性造成重要影响。结合观测台站的历史沿革数据,使用ACMANT和Pairwise Comparisons方法以及RHtest V4软件,对北京地区20个台站均一化前的月平均气温序列进行了非均一性检验和订正,最后评估了均一化对北京地区气温序列变化趋势及其城市化偏差估算的影响。结果表明:除元数据中记录的断点外,无元数据记录的断点也会对序列的趋势变化造成明显影响,其中乡村站最显著;经过订正,1958—2018年整个北京地区、乡村站以及城市站增温趋势分别为0.27℃/(10 a)、0.10℃/(10 a)和0.32℃/(10 a),较订正前分别上升了0.03℃/(10 a)、0.06℃/(10 a)和0.02℃/(10 a)。利用均一化资料估算,1958—2018年北京观象台的城市化影响为0.24℃/(10 a),城市化贡献率为70.2%,评估结果较前人结论有所降低。可见,在现有的北京地区气温资料序列中,仍可能存在较明显的非均一性和未被记录的断点,对区域平均气温趋势估算具有显著影响。  相似文献   

14.
利用1951—2010年中国160站气温、降水资料,分析中国代表性台站冬季和夏季气温、降水的气候值及气候变率在前后30 a的差异,并对结果使用不同方法进行显著性检验。结果表明,季气温气候平均值的变化总体与全球增暖一致,以升温为主,但夏季在秦岭以南及长江中游地区出现显著局部变冷现象;季气温气候变率的变化相对较小,冬季总体不显著,夏季仅有少数台站显著。降水的气候变化总体不明显,季降水气候值变化的空间分布复杂,冬季南方地区、夏季东部地区总体增加,冬、夏季降水气候变率的变化均不显著。理论检验方法(t检验、F检验)与随机模拟方法(EMC法)的显著性检验结果,对气温的差别较小、对降水的差别较大,这与样本距平序列是否服从正态分布有关。EMC法可在确保样本统计特征不变的情况下,通过多次随机模拟,无需考虑其理论统计分布特征,使检验结果更为可靠。  相似文献   

15.
城市热岛效应对甘肃省温度序列的影响   总被引:15,自引:8,他引:15  
对甘肃省若干国家基本/基准站、城市站和乡村站1961—2002年共42年季、年平均温度资料等进行了对比分析。结果表明:城市站和国家基本/基准站比乡村站增温趋势显著。近40多年来城市热岛效应对基本/基准站年平均温度的增温贡献率为18.5%,对城市站年平均温度的增温贡献率为37.6%。季节增温率冬季最大,秋季次之,春夏季最小;城市热岛效应对季节增暖的贡献率则为春季最大,夏季次之,秋冬季最小。  相似文献   

16.
The history of early meteorological observations using instruments in the Czech Lands is described (the longest temperature series for Prague-Klementinum starts in 1775, precipitation series for Brno in 1803). Using the PRODIGE method, long-term monthly temperature and precipitation series from selected secular stations were homogenised (for 10 and 12 stations, respectively). All the seasonal and annual temperature series for the common period 1882–2010 show a significant positive linear trend with accelerated warming from the 1970s onwards. No significant linear trends were disclosed in the series of seasonal and annual precipitation totals. Correlation coefficients between the Czech series analysed decrease as distances between measuring stations increase. A sharper decrease of correlations for precipitation totals displays much weaker spatial relationships than those for mean temperatures. The highest correlations between all stations appeared in 1921–1950, the lowest in 1891–1920 (temperature) and 1981–2010 (precipitation). Wavelet analysis reveals that very distinct annual cycles as well as the slightly weaker semi-annual ones are better expressed for temperature series than for precipitation. Statistically significant cycles longer than 1?year are temporally unstable and sporadic for precipitation, while in the temperature series cycles of 7.4–7.7 and 17.9–18.4?years were recorded as significant by all stations in 1882–2010 (quasi-biennial cycle of 2.1–2.2?years for half the stations). Czech homogenous temperature series correlate best with those of the Northern Hemisphere for annual, spring and summer values (with significant correlation coefficients between 0.60 and 0.70), but this relation is temporally unstable. Circulation indices, such as the North Atlantic Oscillation Index (NAOI) and the Central European Zonal Index (CEZI), may explain the greater part of Czech temperature variability, especially from December to March and for the winter; however, this relationship is much weaker, or even random, for precipitation series. Further, relationships with the Southern Oscillation Index (SOI) are weak and random. Relatively weak coincidences exist between statistically significant cycles in the Czech series and those detected in NAOI, CEZI and SOI series.  相似文献   

17.
北京地区城市热岛强度变化对区域温度序列的影响   总被引:57,自引:2,他引:55  
初子莹  任国玉 《气象学报》2005,63(4):534-540
通过对北京地区20个台站1961~2000年月平均温度资料的对比分析,证实热岛效应对城市气象站记录的地表平均气温的绝对影响随时间显著增大,近20 a尤为突出,但其相对影响即热岛增温对全部增暖的贡献却呈下降趋势。近40 a来,北京地区的国家基本、基准站平均温度距平序列与被认为不受城市热岛影响的郊区站平均温度距平序列差异明显,由于热岛效应加强因素引起的国家基本、基准站平均年温度变化速率为0.16℃/(10 a),对整个时期全部增温的贡献达到71%;近20 a来热岛效应加强因素使北京地区国家基本、基准站年平均温度每10 a增暖0.33℃,对该时期全部增温的贡献达到49%。城市热岛效应加强因素对国家基本、基准站季节平均温度上升的贡献在夏、秋季高,冬季最小。本文的结果说明,目前根据国家基本、基准站资料建立的全国或较大区域平均温度序列可能在很大程度上保留着城市化的影响,有必要做进一步的检验和订正。  相似文献   

18.
Changes in daily climate extremes in the arid area of northwestern China   总被引:3,自引:0,他引:3  
There has been a paucity of information on trends in daily climate and climate extremes, especially for the arid region. We analyzed the changes in the indices of climate extremes, on the basis of daily maximum and minimum air temperature and precipitation at 59 meteorological stations in the arid region of northwest China over the period 1960–2003. Twelve indices of extreme temperature and six indices of extreme precipitation are examined. Temperature extremes show a warming trend with a large proportion of stations having statistically significant trends for all temperature indices. The regional occurrence of extreme cool days and nights has decreased by ?0.93 and ?2.36 days/decade, respectively. Over the same period, the occurrence of extreme warm days and nights has increased by 1.25 and 2.10 days/decade, respectively. The number of frost days and ice days shows a statistically significant decrease at the rate of ?3.24 and ?2.75 days/decade, respectively. The extreme temperature indices also show the increasing trend, with larger values for the index describing variations in the lowest minimum temperature. The trends of Min Tmin (Tmax) and Max Tmin (Tmax) are 0.85 (0.61) and 0.32 (0.17)?°C/decade. Most precipitation indices exhibit increasing trends across the region. On average, regional maximum 1-day precipitation, annual total wet-day precipitation, and number of heavy precipitation days and very wet days show insignificant increases. Insignificant decreasing trends are also found for consecutive dry days. The rank-sum statistic value of most temperature indices exhibits consistent or statistically significant trends across the region. The regional medians after 1986 of Min Tmin (Tmax), Max Tmin (Tmax), warm days (nights), and warm spell duration indicator show statistically more larger than medians before 1986, but the frost days, ice days, cool days (nights), and diurnal temperature range reversed. The medians of precipitation indices show insignificant change except for consecutive dry days before and after 1986.  相似文献   

19.
西南地区城市热岛强度变化对地面气温序列影响   总被引:16,自引:2,他引:14       下载免费PDF全文
利用1961—2004年我国西南地区322个站的气温观测资料, 分析了乡村站、小城市站、大中城市站和国家基准/基本站气温变化趋势特点, 着重研究了城市化对城镇站和国家站地面气温记录的影响程度和相对贡献比例。结果显示:区域平均的各类台站年平均气温呈现不同程度的上升趋势, 城市站、国家站的增温速率均高于乡村站。大中城市站和国家站的年平均热岛增温率分别为0.086 ℃/ 10a和0.052 ℃/10a, 其增温贡献率分别达57.6%和45.3%。与大多数地区不同, 西南地区的增温速率明显偏小。因此, 尽管平均热岛强度变化比许多地区弱, 但其相对贡献明显, 表明城市化对该区域气温趋势的绝对影响较弱, 但相对影响较强。另外, 城市热岛增温有明显的季节变化, 表现为秋季最强, 春季或冬季次之, 夏季最弱。热岛增温贡献率则为春季最大 (100%), 夏季次之 (73%以上), 秋季和冬季相对较小。这主要是因为春、夏两季背景气候变凉或趋势微弱, 热岛增温在实际增温中占有更高的比例。  相似文献   

20.
Trend analysis of temperature parameters in Iran   总被引:1,自引:1,他引:0  
In this study, long-term annual and monthly trends in mean maximum, mean minimum and mean temperature are investigated at 35 synoptic stations in Iran. The statistical significance of trends is assessed by the Mann–Kendall test. Most stations, especially those in western and eastern parts of country, had significant positive trends in monthly temperature time series in summer season. However, the maximum number of stations with the positive trend were observed in April (30 stations), and then in August (29 stations) while the negative trends were seen in February (16 stations) and March (15 stations). On annual scale, most stations in western and southern parts of Iran had significant positive trend. Overall, about 71%, 66% and about 40% of stations had statistically significant trends in mean annual temperature, mean annual minimum temperature and in mean annual maximum temperature, respectively. These results, however, indicate that the climate in Iran is growing warmer, especially in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号