首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
Effects of vertical wind shear, radiation, and ice clouds on cloud microphysical budget associated with torrential rainfall during landfall of severe tropical storm Bilis (2006) are investigated by using a series of analysis of two-day grid-scale sensitivity experiment data. When upper-tropospheric upward motions and lower-tropospheric downward motions occur on 15 July 2006, the removal of vertical wind shear and ice clouds increases rainfall contributions from the rainfall type (CM) associated with positive net condensation and hydrometeor loss/convergence, whereas the exclusion of cloud radiative effects and cloud-radiation interaction reduces rainfall contribution from CM. The elimination of vertical wind shear and cloud-radiation interaction increases rainfall contribution from the rainfall type (Cm) associated with positive net condensation and hydrometeor gain/divergence, but the removal of cloud radiative effects and ice clouds decreases rainfall contribution from Cm. The enhancements in rainfall contribution from the rainfall type (cM) associated with negative net condensation and hydrometeor loss/convergence are caused by the exclusion of cloud radiative effects, cloud-radiation interaction and ice clouds, whereas the reduction in rainfall contribution from cM results from the removal of vertical wind shear. When upward motions appear throughout the troposphere on 16 July, the exclusion of all these effects increases rainfall contribution from CM, but generally decreases rainfall contributions from Cm and cM.  相似文献   

2.
Microphysical and radiative effects of ice clouds on diurnal variations of tropical convective and stratiform rainfall are examined with the equilibrium simulation data from three experiments conducted with a two-dimensional cloud resolving model with imposed temporally and zonally invariant winds and sea surface temperature and zero mean vertical velocity. The experiment without ice radiative effects is compared with the control experiment with ice microphysics (both the ice radiative and microphysical effects) to study effects of ice radiative effects on diurnal rainfall variations whereas it is compared with the experiment without ice microphysics to examine ice microphysical effects on the diurnal rainfall variations. The ice radiative processes mainly affect diurnal cycle of convective rainfall whereas the ice microphysical processes have important impacts on the diurnal cycles of both convective and stratiform rainfall. Turning off the ice radiative effects generally enhances convective rainfall during the morning and evening and suppresses convective rainfall in the afternoon whereas turning off the ice microphysical effects generally suppresses convective and stratiform rainfall during the morning and enhances convective and stratiform rainfall in the afternoon and evening. The ice radiative and microphysical effects on the diurnal cycle of surface rainfall are mainly associated with that of vapor condensation and deposition, which is controlled by air temperature through saturation specific humidity. The ice effects on the diurnal cycle of local temperature tendency are largely explained by that of latent heating since the diurnal cycle of radiation is insensitive to the ice effects.  相似文献   

3.
The effects of ice microphysics on tropical atmospheric and oceanic variability are investigated with a two-dimensional coupled ocean-cloud resolving atmosphere model forced by the large-scale vertical velocity and zonal wind derived from Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE). The experiment without ice microphysics is compared to a control experiment with ice microphysics. Compared to the control experiment, the experiment without ice microphysics generates a more humid and colder atmosphere by suppressing stratiform clouds and rainfall and associated latent heating; the experiment without ice microphysics produces a saltier mixed layer by a larger saline forcing associated with a weaker stratiform rainfall. Ocean mixed-layer temperature is insensitive to the atmospheric variability associated with ice microphysics.  相似文献   

4.
采用二维和三维完全弹性参数化冷云数值模式模拟研究了低层单向切变风场中积云的发展演变过程和地面降水特征。结果表明:在低层切变风场中,用热泡扰动方式激发对流的启动条件提高,而冷出流方式激发对流则更加容易。适当强度的低层切变使对流峰值强度减小,但积云生命史延长,地面累计总降水量增大,雨区拓宽,峰值雨强则减小。采用二维模式来模拟单向切变风场的对流活动虽然存在严重歪曲,但积云最大升速以及地面总降水随时间的演变特征与三维模拟结果一致。  相似文献   

5.
Ice clouds are an important component in precipitation systems. The radiative processes of ice clouds directly impact radiation in heat budget and the microphysical processes of ice clouds directly affect latent heat and net condensation through deposition processes, which may eventually change surface rainfall. Thus, torrential rainfall responses to radiative and microphysical processes of ice clouds during a landfall of severe tropical storm Bilis (2006) are investigated with the analysis of sensitivity experiments. The two-dimensional cloud-resolving model is integrated for 3 days with imposed zonally uniform vertical velocity, zonal wind, horizontal temperature and vapor advection from NCEP/GDAS data. One sensitivity experiment excludes the radiative effects of ice clouds and the other sensitivity experiment excludes ice microphysics and associated radiative and microphysical processes. Model domain mean surface rain rate is barely changed by the exclusion of radiative effects of ice clouds due to the small decrease in net condensation associated with the small reduction in latent heat as a result of the offset between the increase in radiative cooling and the decrease in heat divergence. The exclusion of microphysical effects of ice clouds decreases the mean rain rate simply through the suppression of latent heat as a result of the removal of deposition processes. The total exclusion of ice microphysics decreases the mean rain rate mainly through the exclusion of microphysical effects of ice clouds.  相似文献   

6.
"98.5"华南前汛期暴雨云微物理场数值模拟分析   总被引:2,自引:1,他引:2  
为了进一步理解暴雨发生过程中云微物理场的演变和云微物理过程与动力、热力过程的相互作用,利用非静力中尺度数值模式MM5对1998年5月23~24日的华南暴雨过程进行了模拟,并详细分析了模拟结果。分析结果表明:利用混合冰相显式物理方案比其它方案模拟的降水更接近实际情况;云微物理场的模拟显示没有雪出现,这可能是华南降水云微物理的特点;每小时降水量有先减弱后又增强的趋势,暴雨过程中云的各微物理量的变化趋势与其一致;云的发展与良好的热力动力条件互相作用、共同加强,由南风带来的充足的水汽和热量为其发展提供前提条件,凝结潜热使上升运动向更高处伸展。  相似文献   

7.
The effects of sea surface temperature (SST), radiation, cloud microphysics, and diurnal variations on the vertical structure of tropical tropospheric temperature are investigated by analyzing 10 two-dimensional equilibrium cloud-resolving model simulation data. The increase of SST, exclusion of diurnal variation of SST, and inclusion of diurnal variation of solar zenith angle, radiative effects of ice clouds, and ice microphysics could lead to tropical tropospheric warming and increase of tropopause height. The increase of SST and the suppression of its diurnal variation enhance the warming in the lower and upper troposphere, respectively, through increasing latent heat and decreasing IR cooling. The inclusion of diurnal variation of solar zenith angle increases the tropospheric warming through increasing solar heating. The inclusion of cloud radiative effects increases tropospheric warming through suppressing IR cooling in the mid and lower troposphere and enhancing solar heating in the upper troposphere. The inclusion of ice microphysics barely increases warming in the mid and lower troposphere because the warming from ice radiative effects is nearly offset by the cooling from ice microphysical effects, whereas it causes the large warming enhancement in the upper troposphere due to the dominance of ice radiative effects. The tropopause height is increased mainly through the large enhancement of IR cooling.  相似文献   

8.
Summary A systematic modeling study investigates the effects of cloud condensation nuclei (CCNs) on the evolution of mixed-phase deep convective storms. Following previous studies the environmental conditions like buoyancy and vertical wind shear are varied to simulate different storm types like ordinary single cells, multicells and supercells. In addition, the CCN characteristics are changed from maritime to continental conditions. The results reveal very different effects of continentality on the cloud microphysics and dynamics of the different storms. While a negative feedback on total precipitation and maximum updraft velocity is found for ordinary single cells and supercell storms, a positive feedback exists for multicell cloud systems. The most important link between CCN properties, microphysics and dynamics is the release of latent heat of freezing.  相似文献   

9.
Summary Cloud microphysical processes associated with the diurnal variations of tropical convection are investigated based on hourly data from a 2D coupled ocean-cloud resolving atmosphere simulation. The model is forced by the large-scale vertical velocity and zonal wind derived from TOGA COARE for a 50-day period. The diurnal composites are carried out in weak diurnal SST variations (case W) and strong diurnal SST signals (case S). The ice water path is larger than the liquid water path in case W than it is in case S. The difference is enhanced in the morning in case W and in the early afternoon in case S when the surface rain rates reach their peaks. Further comparison of cloud microphysics budgets, associated with rainfall peaks, between cases S and W shows that solar heating in case S warms air to reduce the contribution of vapor deposition to cloud growth, which decreases ice water path compared to those in case W. While the collection of cloud water by rain is a major contributor to the surface precipitation in both cases, the melting of precipitation ice (sum of snow and graupel) contributes less to the rainfall in case S than in case W.  相似文献   

10.
霰粒子参数对强对流云降水和催化影响的数值模拟研究   总被引:1,自引:0,他引:1  
楼小凤  孙晶  史月琴  师宇 《大气科学》2015,39(3):474-488
本文利用三维对流云AgI催化模式, 开展了霰粒子密度和落速参数的敏感性模拟试验, 以研究高凇附度时霰粒子参数的选取对催化模拟结果的影响。敏感性试验中对七个霰微物理过程进行了调整。分析发现改变霰落速参数和霰密度, 可以引起3小时模拟的总降水量增加4.9%。催化后改变了敏感性试验中霰落速和上升气流的配置, 并影响到霰碰并云水和冰晶的过程, 及霰融化成雨水的过程。在高凇附度云中如果只增加霰密度而没有增加相应的落速系数, 将使云中霰含量大幅增加。霰参数也影响了自然云和催化云的降水效率。过量催化使得催化云的降水效率低于自然云。增加霰密度的同时也增加霰落速系数, 将使其降水效率高于对照试验, 从而影响催化效果。在高凇附度云中采用大密度和较大下落系数, 并且利用比数浓度平均落速计算霰粒子比数浓度的下落过程, 会使催化效率从25%减少到15%, 极大地改变催化效果。所以在高凇附度的暴雨个例中, 应当采用高霰密度和相应的高霰落速, 否则减雨的催化效果将会被大幅夸大。  相似文献   

11.
Summary ?This paper describes a numerical study of the major spiral rainband in typhoon Flo (1990) using the Meteorological Research Institute Mesoscale Nonhydrostatic Model (MRI-NHM). The effects of precipitation schemes and horizontal resolution on the representation of the simulated rainband are discussed. Dynamic and thermodynamic structures of the simulated major rainband to the north of the storm center are well represented in the model with a 5 km horizontal resolution. The structures are consistent with observational results reported for other tropical cyclones. Among the realistic features are: a cold pool and convergence on the inner side of the band; convergence above low-level inflow layers; and the outward slope of the updraft with height. The band is caused by the motion of the storm through its surroundings where horizontal wind has vertical shear. The simulation of the structure and precipitation pattern associated with the major rainband depends on the precipitation scheme rather than the horizontal resolution. The band appears more realistic when using explicit cloud microphysics as a precipitation scheme, rather than moist convective adjustment. This result is attributable to the difference in scheme triggering. In the simulation with moist convective adjustment, the elimination of vertical instability in low-level atmosphere is excessive, suppressing band formation. The overall structure of the band is also more realistic in the simulation using explicit cloud microphysics, because a cold pool exists in the lower layers and the vertical axis of upward flow tilts outward. This result suggests that prediction will partly depend on variables associated with cloud microphysics, such as the mixing ratio of cloud water. The horizontal grid distance, which varied between 5 and 20 km, quantitatively influenced the rainfall amount, although the large-scale band structure remained unchanged. The rainfall amount increased as the grid interval was reduced from 20 to 10-km but decreased as the interval was further reduced from 10 to 5 km. Received March 20, 2001; revised August 20, 2001  相似文献   

12.
南京"03.7"大暴雨中云物理过程的数值模拟研究   总被引:9,自引:8,他引:1  
利用三维全弹性、双参数化对流云模式和南京站探空资料,对南京“03.7”特大暴雨过程进行了数值模拟研究,着重分析产生这次大暴雨的云物理机制。模拟结果表明,此次暴雨属于积雨云降水,其中云雨碰并是最主要的成雨过程,贡献率达到74%,其次是霰/雹融化,占22%,说明此次降水以暖雨过程为主。通过暖雨过程对比试验表明,虽然冰相过程对雨水的贡献较小,但加入冰相过程能使模拟结果更接近云的实际情况。  相似文献   

13.
In this study,the effects of key ice microphysical processes on the pre-summer heavy rainfall over southern China during 3-8 June 2008 were investigated.A series of two-dimensional sensitivity cloud-resolving model simulations were forced with zonally uniform vertical velocity,zonal wind,horizontal temperature,and water vapor advection data from the National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS).The effects of key ice microphysical processes on the responses of rainfall to large-scale forcing were analyzed by comparing two sensitivity experiments with a control experiment.In one sensitivity experiment,ice crystal radius,associated with depositional growth of snow from cloud ice,was reduced from 100 μm in the control experiment to 50 μm,and in the other sensitivity experiment the efficiency of the growth of graupel from the accretion of snow was reduced to 50% from 100% in the control experiment.The results show that the domain-mean rainfall responses to these ice microphysical processes are stronger during the decay phase than during the onset and mature phases.During the decay phase,the increased mean rain rate resulting from the decrease in ice crystal radius is associated with the enhanced mean local atmospheric drying,the increased mean local hydrometeor loss,and the suppressed mean water vapor divergence.The increased mean rain rate caused by the reduction in accretion efficiency is related to the reduced mean water vapor divergence and the enhanced mean local hydrometeor loss.  相似文献   

14.
The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun (1409) in 2014 is investigated using the Weather Research and Forecasting model version 3.4 with eight cloud microphysics parameterization schemes. Results indicate that the uncertainty of cloud microphysics schemes results in typhoon forecast uncertainties, which increase with forecast time. Typhoon forecast uncertainty primarily affects intensity predictions, with significant differences in predicted typhoon intensity using the various cloud microphysics schemes. Typhoon forecast uncertainty also affects the predicted typhoon structure. Greater typhoon intensity is accompanied by smaller vortex width, tighter vortex structure, stronger wind in the middle and lower troposphere, greater height of the strong wind region, smaller thickness of the eyewall and the outward extension of the eyewall, and a warmer warm core at upper levels of the eye. The differences among the various cloud microphysics schemes lead to the different amounts and distributions of water vapor and hydrometeors in clouds. Different hydrometeors have different vertical distributions. In the radial direction, the maxima for the various hydrometeors forecast by a single cloud microphysics scheme are collocated with each other and with the center of maximum precipitation. When the hydrometeor concentration is high and hydrometeors exist at lower altitudes, more precipitation often occurs. Both the vertical and horizontal winds are the strongest at the location of maximum precipitation. Results also indicate that typhoon intensities forecast by cloud microphysics schemes containing graupel processes are noticeably greater than those forecast by schemes without graupel processes. Among the eight cloud microphysics schemes investigated, typhoon intensity forecasts using the WRF Single-Moment 6-class and Thompson schemes are the most accurate.  相似文献   

15.
气溶胶影响混合相对流云降水的数值模拟研究   总被引:2,自引:0,他引:2  
利用一种新的异质冰相核化参数化方案,研究了当气溶胶同时作为云凝结核和冰核时,在不同高度输送对混合相对流云和降水的影响。结果发现,对于本文研究的理想混合相对流云,气溶胶在边界层的输送导致液滴数浓度明显增加,有效半径减小,霰粒的生长受到抑制,引起霰粒质量浓度降低;而气溶胶在对流层中层4~6km输送时,导致冰晶和霰粒数浓度明显增加。由于较多的冰晶引起更加快速的贝吉隆过程,使霰粒的质量浓度增加;气溶胶在对流层中层2~4km高度输送时冰相形成作用相对较弱,并引起霰粒的数浓度略微增加,由于霰粒的有效半径减小导致其质量浓度下降。气溶胶在不同高度的输送都导致液态和固态降水率降低,随着背景气溶胶数浓度的增加,气溶胶在0~2km、2~4km以及4~6km的输送分别导致累积降水量减少28%~64%、4%~44%和3%~46%,并且对降水的抑制效应及所在高度不同引起的降水差异随着背景气溶胶数浓度的增加而减小。  相似文献   

16.
登陆北上台风暴雨突发性增强的一种机制研究   总被引:6,自引:1,他引:5  
采用一个三维混合模式对1992年8月30日至9月2日一次登陆北上台风暴雨过程进行了模拟。模式可以较准确地预报出与地面倒槽相一致的地面降水位置及降水量值。模拟的台风云系结构与卫星云图比较表明,外围云场与实例云况吻合很好,验证了本模式模拟卫星云图的能力,对卫星云图预报有实际意义;暴雨突然增幅的直接原因是高层冰云与低层供水云的突然北移重叠造成的。受地面倒槽附近强烈辐合抬升的动力作用,各相态云系的分布与垂直运动紧密相关;辐合线右侧的东南低空急流为降水的增幅及维持提供水汽来源;云的相变潜热非绝热加热作用对暴雨的增幅及维持具有正反馈作用,它对暴雨维持具有积极贡献。  相似文献   

17.
Yafei YAN  Yimin LIU 《大气科学进展》2019,36(10):1089-1102
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models.  相似文献   

18.
黄乾  钱悦 《大气科学学报》2021,44(4):615-625
将WRF3.9模式的16种云微物理方案分为单参、双参两组,分别对2016年6月30日—7月4日江淮流域的一次强降水过程进行模拟。首先利用逐小时观测降水对各组模拟降水进行评估,在此基础上利用FY-2G和CALIPSO云产品数据分别评估不同方案对降水过程中总云量、云垂直结构云水含量等宏微观特征的模拟性能。结果表明:选用不同的云微物理参数化方案均能较好地模拟出该次过程的雨带位置和中心降水强度,但不同方案对云宏微观特征的模拟结果有显著差异。分析两组试验对总云量的模拟结果发现,单参方案组除Kessler暖云方案对冰云过程描述不足导致模拟的总云量显著偏高外,其他单参方案和所有双参方案均能模拟出强降水过程中总云量的时空演变特征。从云覆盖率和云水含量的垂直分布特征来看,单参方案组对600 h Pa以下中低层暖云的模拟稳定性整体略优于双参方案组;而对200~500 h Pa的冰相云模拟结果相反,双参方案组比单参试验组模拟的固水含量更加集中。将各层云覆盖率与CALIPSO云产品的对比也发现,对于低层暖云降水过程,选择如WSM3单参云微物理方案比双参方案得到的模拟云量更加接近实况,而对于以深对流为主要运动特征的冷云降水过程,选择如WDM5或WDM6这样双参云微物理方案模拟得出的高云量值更加稳定,误差也更小。  相似文献   

19.
A thunderstorm that produced severe wind, heavy rain and hail on 23 August 2001 in Beijing was studied by a three-dimensional cloud model including hail-bin microphysics. This model can provide important information for hail size at the surface, which is not available in hail parameterization cloud models. The results shows that the cloud model, using hail-bin microphysics, could reasonably reflect the storm's characteristics such as life cycle, rainfall distribution and the diameter of the hailstones and also can reproduce developing processes of downbursts, where they can then be compared with the observed features of the storm. The downburst formation mechanism was investigated based on the cloud microphysics of the simulated storm and it was found that the downburst was primarily produced by hail-loading and enhanced by cooling processes that were due to hail melting and rain evaporation. The loading and melting of hail played crucial roles in the formation of downbursts within the storm.  相似文献   

20.
Uncertainties in simulating the seasonal mean atmospheric water cycle in Equatorial East Africa are quantified using 58 one-year-long experiments performed with the Weather Research and Forecasting model (WRF). Tested parameters include physical parameterizations of atmospheric convection, cloud microphysics, planetary boundary layer, land-surface model and radiation schemes, as well as land-use categories (USGS vs. MODIS), lateral forcings (ERA-Interim and ERA40 reanalyses), and domain geometry (size and vertical resolution). Results show that (1) uncertainties, defined as the differences between the experiments, are larger than the biases; (2) the parameters exerting the largest influence on simulated rainfall are, in order of decreasing importance, the shortwave radiation scheme, the land-surface model, the domain size, followed by convective schemes and land-use categories; (3) cloud microphysics, lateral forcing reanalysis, the number of vertical levels and planetary boundary layer schemes appear to be of lesser importance at the seasonal scale. Though persisting biases (consisting of conditions that are too wet over the Indian Ocean and the Congo Basin and too dry over eastern Kenya) prevail in most experiments, several configurations simulate the regional climate with reasonable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号