首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
春季中国东部气溶胶化学组成及其分布的模拟研究   总被引:2,自引:0,他引:2  
本文利用区域空气质量模式RAQMS(Regional Air Quality Model System),对2009年春季中国东部气溶胶主要化学成分及其分布进行了模拟研究。与泰山站观测资料的对比结果显示,模式能比较合理地反映气溶胶浓度的逐日变化特征。整体上,模式对无机盐气溶胶的模拟好,分别高估和低估黑碳和有机碳气溶胶浓度,其原因与排放源、二次有机气溶胶化学机制和模式分辨率的不确定性有关。模拟结果显示,春季气溶胶浓度高值主要集中于华北、四川东部、长江中下游等地区。受东南亚生物质燃烧和大气输送的影响,中国的云南和广西等地区有机碳浓度高于中国其他地区。中国西北部沙尘浓度较高,而且向东输送并影响到中国东部和南方部分地区。中国东部的华北、四川东部、长江中下游等地PM2.5(空气动力学直径在2.5微米以下的颗粒物)污染严重,4月平均PM2.5浓度超过了我国日平均PM2.5浓度限值。中国东部泰山站的观测和模拟结果都显示近地面硝酸盐浓度超过硫酸盐,中国北部对流层中硝酸盐的柱含量也大于硫酸盐,而在中国南部则相反,这一方面与春季中国云量 南多北少的分布特征以及云内液相化学反应有关,另一方面也与南北温差对气溶胶形成的影响有关。就整个中国东部而言,虽然硫酸盐的柱含量(46 Gg)仍大于硝酸盐(42 Gg),但比较接近,反映出我国氮氧化物排放迅速增加的趋势。春季中国地区对流层中PM10(空气动力学直径在10微米以下的颗粒物)及其化学成分柱含量分别为:990.8 Gg(PM10),52.6 Gg(硫酸盐),48.2 Gg(硝酸盐),32.1 Gg(铵盐),22.9 Gg(黑碳)和74.1 Gg(有机碳),有机碳(OC)中一次有机碳(POC)和二次有机碳(SOC)分别占60%和40%,中国东部PM10中人为气溶胶和沙尘分别占30%和70%,反映了春季沙尘对我国大气气溶胶的重要贡献。  相似文献   

2.
“一带一路”建设让古代丝绸之路的起点——西安成为世界焦点,西安的空气质量也是政府和公众关注的焦点。以2017年5月我国北方的一次强沙尘过程为例,首次利用中国科学院大气物理研究所气溶胶和大气化学模式系统IAP-AACM(Aerosol and Atmospheric Chemistry Model of the Institute of Atmospheric Physics)模拟关中地区细颗粒物(PM2.5)的时空分布,并结合地面逐小时PM2.5观测数据对沙尘气溶胶和PM2.5模拟的关系进行深入探究。结果表明:加入沙尘组分对模拟关中地区PM2.5时空变化特征作用显著,相关性可提升0.4~0.6,并且可以很好地再现强沙尘时段PM2.5浓度骤增的过程;在强沙尘时段和一般时段,沙尘组分对PM2.5的贡献分别为60%~80%和10%~30%;0.11°×0.11°高分辨率模拟有助于提升模式捕捉污染物时空变化的能力。  相似文献   

3.
宋佳琨  陈耀登  陈丹 《气象学报》2021,79(3):477-491
相比冬季大范围静稳条件下的污染堆积过程,秋季气象条件更加复杂和局地化,气象条件模拟不确定性给秋季气溶胶模拟带来了更大难度,且目前研究较少考虑气象-气溶胶因素在线模拟和联合同化。使用WRF/Chem模式和格点统计差值(GSI)三维变分同化系统,2015年10月进行了为期1个月的气象-气溶胶资料联合同化及模拟试验,并基于此讨论了气象-气溶胶资料联合同化对秋季PM2.5浓度模拟的影响。结果表明,WRF/Chem模式可以模拟出秋季污染天气过程,但对华北平原和中东部地区存在高估、西北部存在低估现象;同化地面PM2.5浓度观测资料可以改进对PM2.5浓度的模拟,上述两个地区的偏差均得到订正,6 h预报偏差均降低至6 μg/m3以内;重点针对华北地区的分析表明,秋季PM2.5污染过程与特殊气象条件(湿度升高、风场辐合、区域输送)密切相关,因此在地面PM2.5观测资料同化基础上增加常规气象资料同化,能进一步提高对华北平原气象-污染过程的表达,PM2.5浓度预报相关系数从0.86提高至0.89。气象-气溶胶联合资料同化能更加准确地模拟秋季气溶胶污染过程,为更好地开展污染成因和在气象预报框架下开展气象-气溶胶相互影响研究提供了基础。   相似文献   

4.
北京PM1中的化学组成及其控制对策思考   总被引:5,自引:0,他引:5       下载免费PDF全文
通过分析北京城区2007年夏季和秋季、2008年冬季和春季4个季节PM1中硫酸盐、硝酸盐、铵盐、有机物和黑碳等气溶胶化学组成,结合对我国及全球主要区域PM10中上述气溶胶组分及矿物气溶胶组成的评估,发现因受干旱区产生的沙尘和城市逸散性粉尘的共同影响,整个亚洲大陆,尤其是我国的矿物气溶胶浓度与欧美国家城市区域气溶胶总和的平均值相当或更高。我国在重视控制PM2.5等细粒子污染的同时,不应忽视对PM2.5~PM10之间粗粒子的控制力度;北京城区春、夏、秋、冬的PM1平均质量浓度分别约为94,74,66 μg·m-3和91 μg·m-3,全年平均约为81 μg·m-3,其中有机物气溶胶约占41%,硫酸盐占16%,硝酸盐占13%,铵盐占8%,黑碳和氯化物分别占11%和3%,细矿物气溶胶约贡献7%。对于PM2.5污染的控制,关键是消减PM1中主要气溶胶粒子的排放与转化,其中对有机物的控制更为重要,尽管对于北京而言进一步污染控制的难度已经很大。从科学上来说,即使我国的控制措施能百分之百实现,也很难稳定地达到欧美国家的空气质量水平,因为我国本底矿物气溶胶的浓度较高。应进一步评估各项控制措施的适用性,并制定考虑我国人群健康状况的PM2.5空气质量标准。  相似文献   

5.
利用2014~2019年冬季ERA5再分析资料、成都市PM2.5和PM10逐日浓度数据以及污染物(二氧化硫、氮氧化物、烟粉尘)年排放量数据,通过分析四川盆地近6 a气溶胶污染物的时间变化特征以及PM2.5浓度与气象条件的相关性,探讨了气象条件对四川盆地气溶胶污染的影响。结果表明:近6 a四川盆地冬季气溶胶污染物浓度和严重、重度污染天数均呈波动下降趋势,污染物浓度年际变化与污染物年排放量存在一定差异。首要污染物以PM2.5为主,PM2.5浓度与青藏高原及其下游地区气象条件的关系密切,与对流层低层、中高层气象要素的相关性存在差异,其中与青藏高原及其以北和以东地区850~500 hPa气温呈显著正相关,尤其是与易出现逆温层的四川盆地850~750 hPa温度的相关性最强。当850 hPa东北风较弱且相对湿度偏高、700 hPa西风较强且湿度偏低、500 hPa高压偏强且西风偏弱时,PM2.5浓度偏高;反之亦然。   相似文献   

6.
利用PCA-kNN方法改进广州市空气质量模式PM2.5预报   总被引:3,自引:2,他引:3       下载免费PDF全文
为了提高广州市PM2.5客观预报能力,采用主成分分析结合机器学习算法k近邻(PCA-kNN)方法,基于空气质量模式(CMAQ)预报产品、中尺度天气模式(GRAPES-MESO)预报产品和2017年上半年广州PM2.5观测实况,试验确定PCA-kNN方法的最佳参数方案,建立广州市空气质量模式PM2.5预报客观订正方法。结果表明:与CMAQ模式的PM2.5预报相比,在第1~3天预报时效上,PCA-kNN订正结果与实况的相关系数分别提高20%、15%、29%,均方根误差分别降低17%、16%、20%,平均偏差更接近0,PM2.5浓度等级TS评分接近或优于CMAQ预报,PCA-kNN订正结果优于CMAQ预报。机器学习算法PCA-kNN方法可有效改进广州市空气质量模式PM2.5预报,本研究对其他地区、其他污染物客观预报研究具有借鉴意义。   相似文献   

7.
利用MODIS资料监测京津冀地区近地面PM2.5方法研究   总被引:7,自引:0,他引:7  
为建立京津冀地区冬季近地面细颗粒物浓度监测方法模型,利用气象模式资料对2013年1-3月MODIS的AOD二级深蓝算法产品进行湿度和垂直订正,与同期观测的地面细颗粒物PM2.5资料进行相关分析。结果表明:AQUA的MODIS深蓝算法AOD产品更适用于建立冬季AOD-PM2.5遥感监测模型,其R2为0.33;以气象模式资料中边界层高度代替气溶胶标高对MODIS的AOD进行垂直订正,并结合IMPROVE观测的气溶胶吸湿增长特征构建分区湿度订正方法,可以提高AOD-PM2.5模型结果的精度,建立较为理想的京津冀地区冬季遥感反演综合模型,模型结果与地面监测结果R2达0.5以上。根据建立的模型计算了2013年1-3月的京津冀地区PM2.5月平均浓度,京津冀地区1月的PM2.5浓度较高,南部大部分地区空气质量已经达到重度污染水平。  相似文献   

8.
近年来中国东北地区污染事件频发,为揭示该地区重污染天气分布特征,利用2014—2017年中国东北地区40个城市空气质量数据及对应的高低空天气形势资料,统计分析得到中国东北地区大气污染状况的变化特征以及区域重污染事件的天气学特征。结果表明:2015—2017年中国东北地区PM2.5和PM10年平均质量浓度呈下降趋势,其中PM2.5年平均质量浓度下降的更快,PM2.5最大值出现在辽宁和吉林中部地区约为90—100 μg·m-3,SO2年平均质量浓度较高值分布在辽宁西部地区约为50 μg·m-3,而NO2最大值出现在沈阳—长春—哈尔滨一带,约为45 μg·m-3,CO质量浓度最大值分布在东北沿海地区约为1.6 mg·m-3,相反中国东北地区O3年平均质量浓度呈上升趋势,最大值出现在沿海的大连及营口等地,约为100 μg·m-3。污染物浓度变化具有鲜明的季节变化特征,不同地区PM2.5和PM10与AQI最大值均出现在冬季,SO2冬季质量浓度最大值出现在沈阳(180 μg·m-3),NO2与CO冬季最大值出现在哈尔滨(80 μg·m-3,1.8 mg·m-3)。相反,O3最大值出现在夏季沈阳地区约为140—150 μg·m-3。重度污染级别(200 μg·m-3≤PM2.5 < 300 μg·m-3)和严重污染级别(PM2.5>300 μg·m-3)的空气质量表现出以哈尔滨为中心,向周围迅速减少,辽宁中部又略有增加的特征;中度污染(150 μg·m-3≤PM2.5 < 200 μg·m-3)的天数沈阳>哈尔滨>长春,轻度污染(100 μg·m-3≤PM2.5 < 150 μg·m-3)的天数是沈阳>长春>哈尔滨。引发中国东北地区重污染的天气形势大致可分为高压型,低压型和北高南低型3种,出现比例分别为62%、27%和11%;高压型850 hPa高压脊东移经过中国东北地区,地面处于高压南部或弱高压中心,有时在黑龙江北部或辽宁西南部连续有弱小的低压生成并快速东移过境;低压型850 hPa低压系统发展并东移经过中国东北地区,地面处于低压后弱高压中;北高南低型850 hPa和地面中国东北地区受北面高压和南面低压的共同影响。  相似文献   

9.
太原冬季PM2.5中有机碳和元素碳的变化特征   总被引:4,自引:2,他引:4       下载免费PDF全文
2005年12月—2006年2月在太原市区持续观测了气溶胶细粒子PM2.5, 并应用Sunset碳分析仪进行了有机碳 (organic carbon, OC) 和元素碳 (elemental carbon, EC) 的测定。结果表明:太原冬季PM2.5, OC和EC浓度均较高, 其中PM2.5日平均浓度变化范围为25.4~419.0 μg/m3, 日平均浓度为193.4±102.3 μg/m3, OC平均浓度为28.9±14.8 μg/m3, EC平均浓度为4.8±2.2 μg/m3, OC/EC平均比值是7.0±3.9, 即太原市冬季PM2.5和碳气溶胶污染严重。OC在PM 2.5中占18.6%, EC占2.9%, 这表明碳气溶胶是太原大气细粒子污染控制的关键组分。在太原市冬季, 采暖燃烧的煤是OC和EC的主要贡献源, 造成OC大大高于EC, 从而使OC/EC比值增大。各种气象条件对PM2.5, OC, EC和OC/EC比值的变化都有不同程度的影响, 特别是大雾天气、相对湿度、风速和降雪是影响碳气溶胶浓度变化的重要因素。  相似文献   

10.
利用第三代空气质量预报模式LOTOS-EUROS(Long Term Ozone Simulation-European Operational Smog)对2018年中国长三角地区细颗粒物(PM2.5)浓度的时空分布进行数值模拟,通过对比模拟结果与地面观测值,验证模式对PM2.5长期特征模拟的合理性并探讨长三角地区PM2.5的时空分布特征。结果表明:LOTOS-EUROS模式可以较好地再现中国长三角地区PM2.5浓度的时空分布特征,监测站点观测值和模拟值的整体相关系数达到0.64,可以用于长三角地区细颗粒物的模拟。长三角地区PM2.5浓度呈冬高夏低,西北高东南低的特征。冬季PM2.5浓度高值出现在长三角地区的西北部,安徽省等地区的浓度水平最大值可达到160 μg·m-3;春季和秋季PM2.5浓度的高值集中在30°N以北、120°E以西地区,浓度为40-80 μg·m-3;而夏季PM2.5浓度水平大幅度降低,大部分地区维持在20-40 μg·m-3,低值中心出现在长三角地区东南部沿海城市,低于10 μg·m-3,最低值可达5 μg·m-3。  相似文献   

11.
使用RegCM3-dust区域气候模式,单向嵌套MIROC3.2-hires全球模式输出结果,在IPCCA1B温室气体排放情景下,对中国及东亚地区进行了当代(1991年-2000年)和未来(2091年-2100年)水平分辨率为50km的气候以及沙尘气溶胶数值模拟试验。结果表明,模式对中国地区地面气温、降水和东亚沙尘气溶胶空间分布模拟较好。未来东亚沙尘气溶胶年平均起沙通量增加2%,其中12月-3月由于地表积雪量的减少而增加,4月-11月由于10m风速的减小而减少,不同强度的强起沙事件同样12月-3月增加,4月-11月减少。年平均沙尘气溶胶柱含量增加14%,其中3月-5月和8月略减少,其它月份增加。沙尘气溶胶引起地面(SRF)负辐射强迫和沙尘源区大气顶(TOA)正辐射强迫、下游地区TOA负辐射强迫,受沙尘气溶胶辐射强迫的影响,地面起沙通量和柱含量减少。  相似文献   

12.
使用NASA/NCAR有限区域大气环流模型FvGCM结果驱动高分辨率区域气候模式RegCM3 (20 km),进行1961~1990年当代气候模拟(控制试验)和2071~2100年IPCC A2排放情景下未来气候模拟(A2情景模拟试验)。将RegCM3径流模拟结果同大尺度汇流模型LRM [分辨率0.25°(纬度)×0.25°(经度)]相连接,模拟预估未来气候变化对我国黄河流域水文过程的影响。结果表明:相对于当代气候,未来黄河流域呈现气温升高、降水增加(夏季7~8月降水减少)和蒸发增大的趋势,且空间分布极不均匀,造成河川径流在5~10月减少,加剧流域夏季的水资源短缺;未来气温升高使得融雪径流增加,可能导致更早和更大的春季径流,使径流过程发生季节性迁移,引起黄河流域水资源年内分配发生变化。  相似文献   

13.
This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450 ppm CO2e and leads to a 2 °C increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.  相似文献   

14.
The current study presents an assessment of the impact of climate change on water yield, one of the main hydrological ecosystem services, in northern Patagonia. The outputs of regional climate models from the CORDEX Project for South America were used to drive the InVEST water yield model. CORDEX regional climate models project for the far future (2071–2100) an increase in temperature higher than 1.5 °C and a precipitation decrease ranging from − 10 to − 30% for the study area. The projected warmer and dryer climate emerges as a robust signal based on model agreement and on consistent physical drivers of these changes. Moreover, both the projected increase in evapotranspiration and the decrease in precipitation contribute to a strong decrease in water yield of around − 20 to − 40% in the headwaters of northern Patagonian watersheds. Comparison of the results in the two basins reveals that the land cover may be considered a buffer of water yield changes and highlights the key role of protected areas in reducing the vulnerability of water resources to climate change.  相似文献   

15.
张天航  廖宏  常文渊  刘瑞金 《大气科学》2016,40(6):1242-1260
目前气候模式对沙尘气溶胶直接辐射强迫模拟仍有很大不确定性,多模式对比有助于定量评估不确定范围。国际大气化学—气候模式比较计划(Atmospheric Chemistry and Climate Model Intercomparison Project,ACCMIP)旨在评估当前模式对短寿命大气成分辐射强迫和气候效应的模拟能力。基于7个ACCMIP模式模拟的中国地区沙尘气溶胶浓度,我们评估了中国区域沙尘气溶胶直接辐射强迫和不确定性范围。结果显示,中国区域沙尘气溶胶年排放总量为215±163 Tg a-1,区域年均地表浓度为41±27 μg m-3,柱浓度为9±4 kg m-2,光学厚度为0.09±0.05。中国区域年均沙尘气溶胶产生的大气顶短波、长波和总辐射强迫分别为-1.3±0.8 W m-2、0.7±0.4 W m-2和-0.5±0.7 W m-2;地表短波、长波和总的辐射强迫值为-1.5±1.0 W m-2、1.8±0.9 W m-2和0.2±0.2 W m-2。沙尘气溶胶长波辐射强迫对沙尘浓度的垂直分布敏感。高层沙尘气溶胶浓度越大,其在大气顶产生更强的正值长波辐射强迫。然而,沙尘气溶胶短波辐射强迫主要受整层沙尘柱浓度控制,对沙尘浓度的垂直分布较不敏感。本文结果可为中国沙尘气溶胶的气候模拟提供参考。  相似文献   

16.
Climate change modulates surface concentrations of fine particulate matter (PM2.5) and ozone (O3), indirectly affecting premature mortality attributed to air pollution. We estimate the change in global premature mortality and years of life lost (YLL) associated with changes in surface O3 and PM2.5 over the 21st century as a result of climate change. We use a global coupled chemistry-climate model to simulate current and future climate and the effect of changing climate on air quality. Epidemiological concentration-response relationships are applied to estimate resulting changes in premature mortality and YLL. The effect of climate change on air quality is isolated by holding emissions of air pollutants constant while allowing climate to evolve over the 21st century according to a moderate projection of greenhouse gas emissions (A1B scenario). Resulting changes in 21st century climate alone lead to an increase in simulated PM2.5 concentrations globally, and to higher (lower) O3 concentrations over populated (remote) regions. Global annual premature mortality associated with chronic exposure to PM2.5 increases by approximately 100 thousand deaths (95 % confidence interval, CI, of 66–130 thousand) with corresponding YLL increasing by nearly 900 thousand (95 % CI, 576–1,128 thousand) years. The annual premature mortality due to respiratory disease associated with chronic O3 exposure increases by +6,300 deaths (95 % CI, 1,600–10,400). This climate penalty indicates that stronger emission controls will be needed in the future to meet current air quality standards and to avoid higher health risks associated with climate change induced worsening of air quality over populated regions.  相似文献   

17.
 The potential climatic consequences of increasing atmospheric greenhouse gas (GHG) concentration and sulfate aerosol loading are investigated for the years 1900 to 2100 based on five simulations with the CCCma coupled climate model. The five simulations comprise a control experiment without change in GHG or aerosol amount, three independent simulations with increasing GHG and aerosol forcing, and a simulation with increasing GHG forcing only. Climate warming accelerates from the present with global mean temperatures simulated to increase by 1.7 °C to the year 2050 and by a further 2.7 °C by the year 2100. The warming is non-uniform as to hemisphere, season, and underlying surface. Changes in interannual variability of temperature show considerable structure and seasonal dependence. The effect of the comparatively localized negative radiative forcing associated with the aerosol is to retard and reduce the warming by about 0.9 °C at 2050 and 1.2 °C at 2100. Its primary effect on temperature is to counteract the global pattern of GHG-induced warming and only secondarily to affect local temperatures suggesting that the first order transient climate response of the system is determined by feedback processes and only secondarily by the local pattern of radiative forcing. The warming is accompanied by a more active hydrological cycle with increases in precipitation and evaporation rates that are delayed by comparison with temperature increases. There is an “El Nino-like” shift in precipitation and an overall increase in the interannual variability of precipitation. The effect of the aerosol forcing is again primarily to delay and counteract the GHG-induced increase. Decreases in soil moisture are common but regionally dependent and interannual variability changes show considerable structure. Snow cover and sea-ice retreat. A PNA-like anomaly in mean sea-level pressure with an enhanced Aleutian low in northern winter is associated with the tropical shift in precipitation regime. The interannual variability of mean sea-level pressure generally decreases with largest decreases in the tropical Indian ocean region. Changes to the ocean thermal structure are associated with a spin-down of the Atlantic thermohaline circulation together with a decrease in its variability. The effect of aerosol forcing, although modest, differs from that for most other quantities in that it does not act primarily to counteract the GHG forcing effect. The barotropic stream function in the ocean exhibits modest change in the north Pacific but accelerating changes in much of the Southern Ocean and particularly in the north Atlantic where the gyre spins down in conjunction with the decrease in the thermohaline circulation. The results differ in non-trivial ways from earlier equilibrium 2 × CO2 results with the CCCma model as a consequence of the coupling to a fully three-dimensional ocean model and the evolving nature of the forcing. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

18.
This paper deals with the atmospheric concentrations of PM5 and PM2.5 particulate matter and its water soluble constituents along with the size distribution of ions and spatial variation at three different residential environments in a semiarid region in India. Samples were collected from the indoors and outdoors of urban, rural and roadside sites of Agra during October 2007–March 2008. The mean concentrations of PM2.5 indoors and outdoors were 178 μgm−3 and 195 μgm−3 while the mean concentrations of PM5 indoors and outdoors were 231.8 μgm−3 and 265.2 μgm−3 respectively. Out of the total aerosol mass, water soluble constituents contributed an average of 80% (33% anions, 50% cations) in PM5 and 70% (29% anions, 43% cations) in PM2.5. The indoor–outdoor ratio of water soluble components suggested additional aerosol indoor sources at rural and roadside sites. Indoor–outdoor correlations were also determined which show poor relationships among concentrations of aerosol ions at all three sites. Univariate Pearson correlation coefficients among water soluble aerosols were determined to evaluate the relationship between aerosol ions in indoor and outdoor air.  相似文献   

19.
Summary Climatic changes of summer temperature and precipitation in the greater Alpine region are assessed by using statistical-dynamical downscaling. The downscaling procedure is applied to two 30-year periods (1971–2000 and 2071–2100, summer months only) taken from the results of a transient coupled ocean/atmosphere climate scenario simulation with increasing greenhouse gas concentrations. The downscaling results for the present-day climate are compared with observations. The estimated regional climate change during the next 100 years shows a general warming. The mean summer temperatures increase by 3 to 5 Kelvin. The most intense climatic warming is predicted in the western parts of the Alps. The amount of summer precipitation decreases in most parts of central Europe by more than 20 percent. Increasing precipitation is simulated only over the Adriatic area and parts of eastern central Europe. The results are compared with observed climate trends for the last decades and results of other regional climate change estimations. The observed trends and the majority of the simulated trends (including ours) have a number of common features. However, there are also climate change estimates of other groups which completely contradict our results. Received April 8, 1999 Revised November 16, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号