首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
印度季风的年际变化与高原夏季旱涝   总被引:11,自引:6,他引:5  
周顺武  假拉 《高原气象》2003,22(4):410-415
根据NCEP/NCAR再分析资料和海表面温度距平资料,分析了西藏高原夏季降水5个多、少雨年春、夏季印度洋850hPa、200hPa合成风场和合成海温场,发现多、少雨年前期与同期印度洋高、低空风场和海温场均存在明显差异,主要表现为高原夏季降水偏多(少)年印度夏季风偏强(弱),在850hPa合成风场上印度半岛维持西(东)风距平,西印度洋—东非沿岸为南(北)风距平,夏季阿拉伯海区和孟加拉湾出现反气旋(气旋)距平环流;200hPa合成风场上印度半岛维持东(西)风距平,南亚高压偏强(弱),索马里沿岸为南(北)风距平。印度夏季风异常与夏季印度洋海温距平的纬向分布型有密切联系。当夏季海温场出现西冷(暖)东暖(冷)的分布型时,季风偏强(弱),高原降水普遍偏多(少)。相关分析指出,索马里赤道海区的风场异常与高原夏季降水的关系最为密切,在此基础上我们定义了一个索马里急流越赤道气流指数,用它识别高原夏季旱涝的能力较之目前普遍使用的印度季风指数有了明显的提高。  相似文献   

2.
长江中下游夏季降水与热带对流的关系   总被引:5,自引:0,他引:5       下载免费PDF全文
李春  康建鹏  吴芃 《气象科学》2004,24(4):448-454
本文利用1979~2001年中国160站月平均降水资料、NCEP/NCAR月平均再分析资料,包括OLR资料、500hPa高度场、海平面气压场及850hPa风场,借助相关分析、合成分析研究了长江中下游夏季降水与热带对流活动的关系。结果表明,热带对流活动与长江中下游夏季降水之间呈显著的正相关,即夏季热带对流活动强(弱),长江中下游降水偏少(多),易出现干旱(洪涝)。热带对流活动异常引起中、低纬度大气环流系统异常,中、低纬度大气环流系统异常向中、高纬度传播,引起中、高纬度大气环流系统异常,构成东亚地区大气环流异常,导致长江中下游地区夏季降水异常。  相似文献   

3.
运用NCEP/NCAR再分析资料和中国气候中心整编的160站月平均降水资料应用经验正交函数、线性相关分析等,分析了江淮地区夏季降水异常特征及其与西印度洋区域大气环流年际异常关系的变化及其可能的机理。结果表明:当500 hPa中纬度低槽活动偏多(少),西太平洋副热带高压偏强(弱),东亚夏季风偏强(弱)时,江淮地区降水偏多(少)。进一步分析还发现西印度洋上空的垂直环流与江淮夏季降水存在较好的关系,但这种年际异常之间的联系受到背景场的影响明显:1979—1993年西印度洋垂直上升运动与江淮夏季降水的变化趋势基本相反,两者线性相关系数为-0.43;1994—2010年两者的变化趋势基本一致,相关系数达0.71。即当西印度洋地区存在环流异常下沉(上升)时,西太平洋副热带高压通常异常减弱东退(增强西伸),副热带季风减弱(增强),有利于雨带偏南(北)。因此,在西太平洋副热带高压和副热带季风年代际偏强(弱)阶段,西印度洋环流与江淮夏季降水呈负(正)相关。  相似文献   

4.
西太平洋暖池海温异常对东亚环流的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用SST资料对西太平洋暖池海温异常年进行划分,通过对异常年850 hPa、200 hPa矢量风场进行合成分析后发现:在西太平洋暖池夏季暖异常年,副热带夏季风和副热带季风经圈环流得到加强,热带西南季风得到削弱;在暖池夏季冷异常年,热带西南季风和热带季风经圈环流得到了加强,副热带夏季风得到削弱.在暖池冬季暖异常年,东亚冬季风、东亚和印尼一北澳冬季风(北半球)经向垂直环流得到削弱;在暖池冬季冷异常年,东亚冬季风、东亚和印尼一北澳冬季风(北半球)经向垂直环流得到加强.  相似文献   

5.
基于1979~2017年欧洲中期天气预报中心(ECMWF)全球大气数值预报再分析资料ERA-Interim提供的地表潜热及大气环流再分析资料和英国Hadley气候预测和研究中心提供的全球逐月海表温度格点资料以及新疆气象信息中心提供的塔里木盆地26个站逐月降水资料,研究了夏季青藏高原和热带印度洋热力异常对塔里木盆地夏季降水的影响。结果表明:高原北部潜热偏强(弱)和热带印度洋海温偏暖(冷)时,200 hPa纬向风表现为“北负(正)南正(负)”的特征,中亚和贝加尔湖上空分别为异常气旋(反气旋)和异常反气旋(气旋),在二者共同作用下,塔里木盆地上空盛行偏南(北)风,印度半岛上空为异常反气旋(气旋),有利(不利)于将低纬度水汽向北输送,配合中亚上空的异常气旋(反气旋),有利(不利)于水汽进入新疆地区,对应塔里木盆地夏季降水偏多(少)。同时发现塔里木盆地夏季降水与中亚对流层中高层的温度异常(MUTTI)表现为显著的负相关关系,同时MUTTI与高原潜热和印度洋海温的负相关关系显著,夏季高原潜热偏强(弱)时,高原季风偏强(弱),印度洋海温偏暖(冷),南亚季风偏弱(强),在二者共同作用下中亚对流层关键区中高层温度偏低(高),其通过影响200 hPa纬向风、500 hPa环流和整层水汽输送进一步影响塔里木盆地夏季降水。  相似文献   

6.
近40年东亚夏季风及我国夏季大尺度天气气候异常   总被引:75,自引:21,他引:75  
施能  朱乾根  吴彬贵 《大气科学》1996,20(5):575-583
定义了一个反映东亚夏季大尺度季风强度的指数,计算了夏季逐月及季的东亚季风指数(1873~1989年)。用近40年资料研究了东亚夏季风与我国夏季大尺度天气的关系。指出,强夏季风时,我国夏季大范围高温。东亚夏季风与我国夏季降水的关系则表现在夏季雨带的南北位置上。强夏季风时,雨带偏北。夏季雨带位置偏南均与弱季风有关。长江中下游夏季的涝年与弱季风有关,而强夏季风时,长江中下游经常是旱年。最后,研究了强、弱夏季风年时的北半球500 hPa环流异常特征,结果表明,东亚夏季风强度是造成我国夏季气温、降水异常的主要原因。  相似文献   

7.
采用小波分析、Lanczos时间滤波器、合成分析等方法分析了2011年夏季广东季风槽暴雨与大气低频振荡的关系。结果表明,2011年夏季降水主要存在准20 d的周期振荡,季风槽暴雨过程对应强的准双周振荡。选取与夏季降水显著相关的区域(102.5~117.5 °E,20~27.5 °N)平均的500 hPa高度场作为影响广东夏季降水的“500 hPa关键区”指数,同样选取区域(110~120 °E,15~22.5 °N)平均的850 hPa风场作为“850 hPa关键区”指数;2011年夏季500 hPa关键区与850 hPa关键区分别存在显著的准23 d、准22 d周期振荡,季风槽暴雨发生在500 hPa关键区准双周振荡的波谷、850 hPa关键区准双周振荡的波峰附近。从南海南部开始的3次低频纬向风、OLR、湿度的北传与从菲律宾以东的西太平洋向西传播的低频中心相遇,导致3次季风槽暴雨过程。利用典型个例的合成分析,对2011年6—8月广东3次季风槽暴雨的准双周振荡不同位相的大气环流场的共同演变特征进行分析,它们反映了季风槽暴雨从间歇-开始-旺盛-减弱-结束期的大气环流场演变特征,为广东季风槽暴雨的中期预报提供参考依据。   相似文献   

8.
新的高原季风指数与四川盆地夏季降水的关系   总被引:5,自引:1,他引:4       下载免费PDF全文
用NCEP/NCAR逐月再分析资料和中国560站月降水资料,定义了一个高原季风指数IPM2。结果表明:与原有高原季风指数相比,该指数与四川盆地夏季降水的相关性更好,能够较好地反映四川盆地夏季降水的异常变化。当高原夏季风偏弱时,巴尔喀什湖至贝加尔湖低压槽、亚洲东岸高压脊、印度低压均加强,同时西太平洋副热带高压偏北,来自孟加拉湾的西南风水汽输送和源于西太平洋的偏南风水汽输送均加强,这种环流形式有利于四川盆地西(东)部夏季降水偏多(少);当高原夏季风偏强时,情况相反。IPM2弱(强)大(小)年与四川盆地西(东)部涝年环流背景相似,表明IPM2能够很好反映四川盆地夏季降水异常的环流场特征。  相似文献   

9.
热带环流强度变化与我国夏季降水异常的关系   总被引:9,自引:0,他引:9  
何敏 《应用气象学报》1999,10(2):171-180
该文用850 hPa和200 hPa纬向风距平差定义南海热带季风、沃克环流及热带环流强度指数,并讨论它们的天气气候学意义。指出由南海热带季风指数和沃克环流指数之差表征的热带环流强度指数与我国夏季降水,尤其是与长江流域降水有密切的关系;通过热带环流强度指数与冬、春、夏季500 hPa高度场、SLP、SST、OLR的相关分析,揭示用热带环流强度指数表征的热带环流异常影响我国夏季降水的可能途径。热带环流强度指数的季节变化规律及其与前期环境场的相关关系,对夏季雨带位置的预报有一定的参考价值。  相似文献   

10.
该文通过对贵州夏季降水距平百分率场EOF的分解、贵州夏季降水距平百分率与WF指数的相关性和合成分析,以及850 hPa纬向风距平场合成分析,得出如下结论:①贵州夏季降水距平百分率场EOF的分解,所得出对应的基本分布型,即东北—西南向为负值中心,整个贵州省均为同一符号,贵州夏季降水降水距平百分率场具有相当高的一致性,第一模态的空间分布的典型性变化与WF指数的变化是对应的。②标准化WF指数的线性趋势每百年以0.79的趋势减小,标准化WF指数5点平滑变化曲线呈现年代际的变化特征,周期9~10 a。③与贵州夏季降水距平百分率的相关中,通过信度(t=0.05)的区域主要集中在贵州省北部、黔东南与黔南交界。且除黔西南的西南角为正相关外,其余省大部地区都是负相关。④850 hPa纬向风距平场在WF指数在强、弱季风年合成中,在WF指数强季风年,关键区Ⅰ、Ⅱ主要盛行西风,在这种环流形势下贵州夏季降水距平百分率场是偏少;当关键区Ⅰ盛行东风,关键区Ⅱ北部是西风,南部是东风,贵州夏季降水偏多。  相似文献   

11.
OLR与长江中游夏季降水的关联   总被引:9,自引:0,他引:9       下载免费PDF全文
用SVD方法分析了1、4、7月全球OLR与夏季(6—8月)中国华中区域降水场的关系,结果表明:若1月南非东部沿岸至西印度洋、北美北部OLR(Outgoing Longwave Radiation)偏低(偏高),或北非、美国西南沿岸及近海OLR偏高(偏低),则夏季长江中游降水将偏多(偏少)。若4月澳大利亚至东印度洋、日界线以东热带太平洋OLR偏低(偏高),或西北太平洋偏高(偏低),则夏季长江中游降水将偏多(偏少)。若7月东印度洋—澳大利亚大陆、东亚OLR偏低(偏高),则夏季华中区域长江及其以北降水将偏多(偏少),湖南和江西南部降水将偏少(偏多)。夏季长江中游旱、涝年前期OLR明显的区别在于热带太平洋:涝年1月东、西太平洋为明显负、正异常,4月这种异常进一步加剧;旱年1月正好相反,东、西太平洋为微弱的正、负异常,4月转为东、西太平洋为微弱的负、正异常。太平洋暖池OLR低值区(强对流区)4、7月持续偏南,是夏季长江中游降水偏多的另一重要信号。冬、春季OLR与夏季长江中游降水大尺度关联的可能机制为:若1月热带东、西太平洋OLR为明显负、正异常,4月这种异常进一步加剧,也即冬、春季热带太平洋Walker环流持续减弱,从而使夏季暖池对流活动减弱,热带辐合带偏南,Hadley环流偏弱,使夏季西太平洋副热带高压主体位置偏南,导致中国夏季主雨带不能北推至黄河流域,而长期滞留长江中下游,最后造成长江中游降水异常。  相似文献   

12.
ENSO 与中国东部夏季降水的关联   总被引:8,自引:1,他引:7  
计算1 月减6 月El Niño 3.4 指数与6—8 月平均200、850 hPa 风场的相关矢量,分析中等或强ElNiño/La Niña 事件后的夏季(6—8 月)中国东部降水异常分布、西太平洋副热带高压异常特征。结果表明,对ENSO 的响应,无论高、底层大气环流还是西太平洋副热带高压,1970 年代中期气候突变后变为更敏感。主要表现在:对衰减的El Niño 的响应,夏季南亚高压偏东,西太平洋副热带高压偏强、偏西、偏南,印度季风、南海季风减弱,黄河下游以南副热带季风增强。黄河中下游及以南形成异常环流辐合带,由El Niño 导致的降水正异常最有可能出现在这一西南-东北的带状区域。对衰减的La Niña 响应大致相反。   相似文献   

13.
选取适当的亚洲夏季风指数并对它们进行分类,结合1979-2020年长江中游地区夏季降水资料,分析了夏季风异常年份长江中游地区夏季大气环流和降水的特征。主要得出以下结论:(1)两类夏季风指数都与长江中游地区夏季降水呈负相关关系,并且第二类夏季风指数与长江中游地区夏季降水的相关关系更加显著,因此选取第二类夏季风指数来反映长江中游地区夏季降水特征。(2)长江中游地区的降水具有低频振荡特征,在第二类夏季风指数高值年和低值年,振荡的主周期都是32-64天。(3)第二类夏季风指数高值年和低值年的降水差异主要取决于西太平副高的强度和偏南季风的水汽输送。  相似文献   

14.
东亚海陆热力差指数及其与环流和降水的年际变化关系   总被引:32,自引:3,他引:32  
利用 196 1~ 1999年海温和地温月平均资料 ,定义了一个海陆热力差指数 ,来表示东亚季风环流的纬向和经向海陆热力差异的变化强度 ,研究了夏季指数与东亚夏季风环流场和中国东部夏季降水的年际变化关系。结果表明 :(1)海陆热力差指数可用来表示东亚夏季风的强弱变化。强指数年东亚季风区低空西南夏季风气流和高层的东风气流明显偏强 ,表明这一年夏季风偏强 ,弱指数年反之。 (2 )海陆热力差指数能较好地反映东部季风区夏季降水的异常状况。强指数年 ,雨带偏北 ,江淮流域和长江中下游明显干旱 ,华南、华北降水偏多 ,弱指数年反之。这一降水异常特征可以从强弱海陆热力差指数年的环流场得到解释。 (3)海陆热力差指数所反映的东亚夏季风具有明显的准 2a和 3~ 6a周期的年际振荡 ,但其振幅和周期具有显著的年代际异常  相似文献   

15.
1998 SCSMEX期间亚洲30-60天低频振荡特征的分析   总被引:34,自引:0,他引:34  
对1998年 5-8月南海季风试验(SCSMEX)期间东亚地区 850 hPa中低纬环流指数、东亚季风指数和长江中下游降水进行了Morlet 小波分析,结果表明在此期间这些要素均有明显的30-60天周期低频振荡。在此基础上对 5-8月每隔 5天的 850 hPa低频流场进行分析,结果表明:(1)100°-150°E间东亚从中国东中部大陆经南海和西太平洋的南北半球中明显的存在一个以30-60天低频荡为特征的东亚季风低频环流系统,东亚季风活动主要受东亚季风系统中低频活动影响;(2)5月第5候南海热带季风爆发、6月中旬长江中下游人梅及产生大暴雨以及7月中旬以后的该地区大暴雨均与低频气旋带在该地区活动有关,而8月长江上游大暴雨则与低频反气旋伸人到大陆有关;(3)SCSMEX期间东亚低频振荡系统的源地有二个,即南海赤道和北半球中太平洋中高纬。南海低频系统向北传播,而中高纬低频系统自东北向西南传播为主。长江中下游6、7月二次大暴雨均与上述二个低频气旋系统自热带向北和中高纬向西南传播并于长江中下游汇合有关;(4)5-8月间东亚季风系统中有二次低频气旋带和二次低频反气旋带活动,这些低频环流系统的活动与印度季风低频环流系统活动并无明  相似文献   

16.
Using daily NCEP/NCAR reanalysis dataset and observation rainfall data in China for the 1971- 2000 period, a subtropical summer monsoon index has been defined by meridional moisture transport of the total atmosphere column. Results show that the subtropical summer monsoon index defined by the difference of meridional moisture transport between South China and North China can be used to describe the intensity of the subtropical summer monsoon. High (low) index is corresponding to strong (weak) subtropical summer monsoon. And the new index is well related to the summer rainfall over the middle and lower reaches of Yangtze River. In addition, the convergence of moisture transport from the west Pacific via the South China Sea and that from the North China may be responsible for the anomalously excessive summer rainfall over the middle and lower reaches of Yangtze River.  相似文献   

17.
《应用气象学报》2005,16(Z1):48-55
利用奇异值分解 (SVD)方法分析和讨论了夏季 85 0hPa和 2 0 0hPa高低层纬向风距平差与我国夏季降水异常的关系 ,发现澳大利亚东北部高低层纬向风切变与长江中下游地区降水有较好的反相关 ,并定义了澳大利亚季风指数。 9个澳大利亚冬季风 (南半球 )指数低值年与 7个高值年我国夏季降水的平均差值图表明 ,显著的降水差异出现在长江中下游 ,低值年有利于长江中下游地区降水偏多 ;澳大利亚冬季风指数与夏季北半球 5 0 0hPa高度场的相关图在东亚至西太平洋的相关分布呈现出“ - -”结构 ,在我国长江以南的中低纬和贝加尔湖的高纬地区是负相关区 ,正相关在我国北方至日本的中纬地区。  相似文献   

18.
    
The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River during 1998 South China Sea Monsoon Experiment (SCSMEX) from May to August. Analysis shows that distinct 30–60 day low-frequency oscillation (LFO) exists in all of the above elements during the exper-iment period. Analysis of low-frequency wind field at 850 hPa from May to August with 5 days interval is performed in this paper. Analysis results reveal that: (1) A low-frequency monsoon circulation system over East Asia, characterized by distinct 30–60 day low-frequency oscillation, exists over 100°-150°E of East Asian area from the middle and eastern parts of China continent and the South China Sea to the western Pacific in both the Northern and Southern Hemisphere. The activity of East Asian monsoon is mainly af-fected by the low-frequency systems in it; (2) All of the tropical monsoon onset over the South China Sea in the fifth pentad of May, the beginning of the Meiyu period and heavy rainfall over the middle and lower reaches of the Yangtze River in mid-June and the heavy rainfall after mid-July are related to the activity of low-frequency cyclone belt over the region, whereas the torrential rainfall over the upper reaches of the Yangtze River in August is associated with the westward propagation of low-frequency anticyclone into the mainland; (3) There are two sources of low-frequency oscillation system over East Asia during SCSMEX. i.e. the equatorial South China Sea (SCS) and mid-high latitudes of the middle Pacific in the Northern Hemisphere. The low-frequency system over SCS propagates northward while that in mid-high latitudes mainly propagates from northeast to southwest. Both of the heavy rainfall over the middle and lower reaches of the Yangtze River in June and July are associated with the northward propagation of the above-mentioned SCS low-frequency systems from the tropical region and the southwestward propagation from mid-high latitudes respectively and their convergence in the middle and lower reaches of the Yangtze River; (4) There are two activities of low-frequency cyclone and anticyclone belt each in the East Asian monsoon system during May to August. However the activity of these low-frequency circulation systems is not clearly relevant to the low-frequency circulation system in the Indian monsoon system. This means that the low-frequency circulation systems in Indian monsoon and East Asian monsoon are independent of each other. The concept previously put forward by Chinese scholars that the East Asian monsoon circulation sys-tem (EAMCS) is relatively independent monsoon circulation system is testified once more in the summer 1998. This work was supported by the key project A of the State Ministry of Science and Technology “South China Sea Monsoon Experiment” and the fruit of it.  相似文献   

19.
南素兰  李建平 《气象学报》2005,63(6):837-846
利用统计方法对春季(4~5月)南半球环状模(SAM)与夏季(6~8月)中国降水的关系作了分析,发现春季南半球环状模指数(SAMI)与夏季长江中下游降水之间存在显著的正相关关系。春季SAM偏强的同期对流层下层在欧亚大陆存在一以蒙古高原和天山山脉为中心的异常反气旋对,从中国东北到华南中纬度地区均为异常的偏北气流控制。这种环流异常形式可以持续到夏季并加强,致使东亚夏季风减弱;春季SAM偏强,夏季西太平洋副热带高压西部脊强度加强,位置偏西,这些异常环流都有利于长江中下游地区降水偏多。另外,春季SAM偏强,夏季长江中下游地区水汽含量增大,向上的垂直运动得到加强,为该地区降水偏多提供了基本的水汽条件。春季SAM偏弱时,夏季东亚大气环流和水汽条件相反。因此,春季SAM为夏季长江中下游汛期降水提供了一有用的前期信号。  相似文献   

20.
The impact of strong (weak) intraseasonal oscillation (ISO) over South China Sea (SCS) and South Asia (SA) in summer on the SCS and SA summer monsoon and the summer rainfall in Eastern China are studied by using the NCEP-NCAR analysis data and the rainfall data of 160 stations in China from 1961 to 2010. It is found that the impacts are significantly different in different months of summer. The study shows that in June and July cyclonic (anticyclonic) atmospheric circulation over SCS and SA corresponds to strong (weak) ISO over SCS. In August, however, strong (weak) ISO over SCS still corresponds to cyclonic (anticyclonic) atmospheric circulation over SA. In June and August cyclonic (anticyclonic) atmospheric circulation over South Asia corresponds to strong (weak) ISO over SA while a strong (weak) ISO corresponds to anticyclonic (cyclonic) atmospheric circulation over SA in July. Besides, in June the strong (weak) ISO over SA corresponds to cyclonic (anticyclonic) atmospheric circulation over SCS, while in July and August the atmospheric circulation is in the same phase regardless of whether the ISO over SA is strong or weak. The impacts of the strong(weak)ISO over SCS on the rainfall of eastern China are similar in June and July, which favors less (more) rainfall in Yangtze-Huaihe Rivers basin but sufficient (deficient) rainfall in the south of Yangtze River. However, the impacts are not so apparent in August. In South Asia, the strong (weak) ISO in July results in less (more) rainfall in the south of Yangtze River but sufficient (deficient) rainfall in Yangtze-Huaihe Rivers basin. The influence on the rainfall in eastern China in June and August is not as significant as in July.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号