首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
太阳辐射是重要的农业资源和立地环境,目前主要依靠公式计算获取,因此选择适当的计算方法是必要的。论文通过比较国内外5种太阳总辐射气候学计算结果与太阳辐射观测值,其方差平均值大小顺序为:孙治安经验公式〈朱志辉经验公式〈左大康经验公式〈翁笃鸣经验公式〈埃斯屈朗方程,因此选择孙治安经验公式Q=Qn[c+(1-c)s]为浙江省太阳总辐射的最佳计算公式。分析计算结果表明,浙江省年太阳总辐射在4332.19~4870.66MJ·m-2之间,东部沿海多,北部、西部少;多年平均年变化值呈双峰型变化,7月最大,12月或1月最小,6月份为一相对低值;以杭州站为代表分析其气候变化,发现太阳总辐射平均每10a下降20MJ·m-2。浙江省年光合有效辐射在2060.16—2310.07MJ·m-2之间;多年平均年变化呈单峰型或弱双峰型变化,分布特征与太阳总辐射类似,年际间光合有效辐射波动较小,趋势变化持平。  相似文献   

2.
利用1951—2014年南京站逐日降水资料、NCEP/NCAR逐日再分析资料和NOAA逐月海表温度资料,分析了南京夏季降水的逐候演变特征及其异常环流。结果表明:1)南京夏季降水集中在6月第5候至7月第3候,在气候态上降水强度存在峰期位于6月第5候和7月第1候的双峰结构。降水峰期还存在准10 a的年代际变化。2)不同年份降水的候演变特征呈现为峰期在6月第5候、7月第2候的单峰结构以及双峰结构这三种状态之间转换。3)当降水单峰出现在7月第2候(6月第5候)时,同年6月第5候,西太副高偏弱(强)偏东(西)、东亚大槽和贝加尔湖浅槽偏弱(强)、南京附近对流层低层水汽异常辐散(辐合)、中层盛行下沉(上升)运动;同年7月第2候,西太副高偏强(弱)偏西(东)、东亚大槽和贝加尔湖浅槽偏强(弱)、南京附近对流层低层水汽异常辐合(辐散)、中层盛行上升(下沉)运动。4)南京夏季降水的峰期变化与前期冬季(175°E~50°W,10~20°N)区域的SST(Sea Surface Temperature)异常有着较好的相关性。  相似文献   

3.
利用1961~2000年赣州站、南昌站的年太阳总辐射与相关气象要素资料,结合Penman公式,运用6种计算净长波辐射的方法估算了两站的年太阳总辐射;建立了估算该地区年太阳总辐射的绝对误差权重法(Method of Absolute Errors,MAE),并给出了适用于江西省的绝对误差权重系数,以此方法计算了江西省其他76站的年太阳总辐射;并分析了该地区年太阳总辐射的时空分布特征及其变化趋势,发现:(1)1961~2000年间,江西省大部分地区太阳总辐射在3800~4400 MJ·m-2·a-1;南部偏东地区较大,且存在有一大值中心;西部地区为江西省太阳总辐射最小的地区;(2)40年间,江西省年太阳总辐射呈明显下降趋势,每10年减少143.70 MJ·m-2。78站中,有63站的太阳总辐射的下降趋势通过了α=0.05的显著性检验,8站表现为上升趋势;江西省北部及南部地区太阳总辐射下降较大;中部地区下降相对较小,且在鄱阳湖东侧有一低值中心。  相似文献   

4.
利用2006~2017年风云气象卫星资料和气象再分析资料,对华北及周边5~8月对流活动和地面感热加热进行统计分析。分析表明,华北及周边白天平均感热加热和地形关系密切,内蒙古中部和东南部、华北北部和华北西部山区感热加热较强,最强感热加热出现在5月和6月,7月和8月明显减弱。和感热加热强度相对应,对流活动频率较高的月份同样出现在5月和6月,其中5月以弱对流为主,6月华北中北部强对流最活跃,另外,环渤海区域6~7月强对流相对频繁。5~8月日平均感热加热和对流频率趋势呈现一致的减弱对应关系。上午,感热加热引起河北西部和北部对流层低层出现辐合气流,700 hPa以下出现不同程度的增温,上升气流可达对流层中层,东侧的平原地区出现补偿下沉运动,升温和上升运动触发对流,在有利条件下发展东移。不同月份和区域对流频率日变化呈现明显差异,6月对流频率日变化显著,8月最弱,山区对流频率日变化显著,东部渤海及周边对流频率日变化较小。对流频率的月平均分布和日变化均表现出和地形相关的感热加热差异的特征。  相似文献   

5.
利用2013—2022年西安市国家气象站和区域气象站观测资料及MICAPS资料,采用统计学方法、天气学分析法对近10 a西安暴雨特征进行分析。结果表明:(1)10 a中,2021年暴雨日最多,为24 d,其他年份在6~16 d之间;暴雨集中出现在7月中旬到8月中旬,8月上旬暴雨日最多,累计达14 d;强降水频次日变化分布呈双峰型,主要集中在12时前后和00时前后;强降水极值雨强频次分布具有三峰型特征,第一峰区在08—12时,第二峰区位于01时,第三峰区位于16时,易发时段为下午到傍晚。(2)暴雨日呈北少南多的分布特征,南部山区为9~23 d,城区及北部区县暴雨日为3~7 d;暴雨极值大值区主要位于周至、长安、蓝田、临潼;4月暴雨日最少,主要集中在周至和蓝田,5月暴雨日增多,主要在南部区县,6月暴雨主要发生在城区和南部区县,7月和8月暴雨范围逐渐东西向扩大,9月逐渐收缩。(3)影响西安区域性暴雨的环流形势分为副高-西风槽型、西风槽型、低涡型、西北气流型等4 种概念模型。(4)西安稳定性暴雨,雨强起伏变化不大,一般CAPE值<100 J/kg,K指数<36 ℃,SI指数>0 ℃,CIN值>50 J/kg,0 ℃层高度在48~51 km;对流性暴雨,小时雨强大,一般CAPE值>800 J/kg,K指数>36 ℃以上;SI指数<0 ℃,CIN值<50 J/kg,0 ℃层高度51~54 km。CAPE值越大、K指数越大,SI指数越小,越有利于对流系统发展。  相似文献   

6.
郭军  熊明明  黄鹤 《山东气象》2019,39(2):58-67
使用2007—2017年京津冀地区156个气象站暖季(5—9月)逐小时降水观测数据,根据地形将研究区域分为6个分区,分析各分区降水量季节内变化和日变化特征,结果表明:1)京津冀的多雨区主要位于沿燕山南麓到太行山,存在多个降雨中心。2)各分区降水量季节内特征总体表现为单峰型,即7月降水量最大,7月第3候至8月第4候是主汛期,8月降水量次之,5月最少。3)降水呈夜间多,白天少的特点,7月初之前的前汛期降水多发生在16—21时;主汛期降水呈双峰型,峰值在17—22时,次峰值出现在00—07时;8月中旬以后的后汛期多夜间降水,峰值多出现在00—08时。4)高原山区多短历时降水,长历时累计降水对季节降水贡献率大值区位于平原地区,而持续性降水贡献率大值位于太行山区和燕山迎风坡的西部。  相似文献   

7.
利用东帕米尔高原塔什库尔干国家基本气候站2020年6月至2021年6月观测的辐射数据,分析了东帕米尔高原不同时间尺度和不同天气条件下各辐射通量及地表反照率变化特征。结果表明:(1)各辐射通量在逐日均值变化上呈“V”型曲线;向下短波辐射、向上短波辐射、向下长波辐射、向上长波辐射和净辐射年曝辐量分别为5001.6, 1370.3, 6090.7, 8550.8和1189.0 MJ·m-2;在季节尺度上,各辐射通量总体表现为夏季>春季>秋季>冬季,而向上短波辐射在冬季最高。(2)不同天气下,辐射通量也不同,晴天时,各辐射通量变化均为较平滑的单峰型,少云、多云时均为不规则单峰型,降水时,除冬季外均为多峰型,辐射通量均值变化表现为晴天>少云>多云>降水。(3)地表反照率在观测期间平均值为0.29,最大值出现在1月,最小值出现在7月,分别为0.58和0.24;在季节上表现为冬季最大,夏季最小;春、夏、秋季地表反照率呈“U”型,冬季为倒“U”型;降雨时地表反照率下降,降雪时则地表反照率上升,说明不同降水类型对地表反照率影响不同。  相似文献   

8.
北京夏季高温闷热天气的气候特征和2008夏季奥运会   总被引:19,自引:4,他引:19  
王迎春  葛国庆  陶祖钰 《气象》2003,29(9):23-27
利用1951~2000年北京6、7、8月的逐日最高和最低温度资料,统计分析了北京夏季高温天气和闷热天气的逐月、旬、候的分布及持续时间。结果表明,北京夏季高温天气和闷热天气发生概率分别为1/10和1/20,是一个适宜举办奥运会的城市。高温天气主要集中在6月下旬和7月份,逐候分布呈双峰型,分别在6月第6候和7月第5候。闷热天气主要集中在7月中旬到8月上旬,逐候分布也呈双峰型,分别在7月第6候和8月第2候。6月份高温天气较多,但闷热天气很少。8月份高温日数非常稀少,但闷热天气日数还有一定数量。每年至少出现一次持续2天的高温天气,另外还非常有可能出现一次持续3天或3天以上的高温天气(0.84次/年)以及一次2天及2天以上的持续闷热天气(0.88次/年)。高温天气和闷热天气的平均持续日数均约为3天。8月中、下旬,高温天气和闷热天气出现的概率都非常小,是最适宜举办夏季奥运会的时期。  相似文献   

9.
1957~2004年盘锦芦苇湿地的气候变化特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
利用1957~2004年盘锦湿地常规气象资料,分析了盘锦湿地的日照、温度、降水和风速的变化特征。结果表明:日照时数的月变化呈双峰曲线,5月和9月表现为日照高峰,7月为日照低谷;近48 a盘锦湿地的年平均气温呈显著的上升趋势,冬季增温最明显,其次为春季,夏季增温最弱,年平均极端最低温度呈显著的上升趋势;近48 a的年平均风速呈显著的下降趋势,月平均风速变化趋势呈双峰曲线。  相似文献   

10.
对流层臭氧垂直分布变化对气候环境有重要的影响,然而观测数据一直较为稀缺。利用2016年7月下旬—8月青海省格尔木市对流层臭氧探空观测资料开展夏季青藏高原北部对流层臭氧垂直分布变化特征及其形成机制的大气背景研究。结果表明,在大气背景的转换下对流层臭氧垂直分布整体上呈现高(低)臭氧与低(高)水汽和高(低)位势涡度的对应。除7月25—27日高空低压槽过境导致的平流层向下输送使对流层臭氧浓度升高明显外,阻塞暖高压反气旋和源自青藏高原主体地区的强对流天气过境也对对流层臭氧分布有影响:阻塞暖高压在观测点东北部形成后导致7月31日至8月8日格尔木对流层连续出现罕见东风,但对流层臭氧浓度仅在8月2日因东北—西南方向反气旋切变而出现较高值,其中6 km高度以下则因为东风输送而出现高臭氧、高比湿的污染性气团;强对流天气过境影响使得8月12—14日10 km高度以上出现臭氧最低值和比湿最高值。与西宁历史夏季(1996年7—8月初)臭氧探空测值比较,格尔木对流层臭氧浓度8月偏低,该特征与季风影响青藏高原纬度最高地区所在月份一致。与林芝(2014年7月)、那曲(2011年7月末—8月中旬)和拉萨(1998年8月)历史夏季臭氧探空测值比较发现,纬度效应对青藏高原地区对流层臭氧浓度有影响。   相似文献   

11.
江门前汛期不同降水时段特征   总被引:4,自引:2,他引:2  
通过对江门地区1971~2007年3—6月候雨量、日雨量,2003~2007年南海和华南地区低层(850hPa)风场、向外长波辐射(OLR)场和水汽场在南海夏季风爆发前后差异的比较分析,发现:江门前汛期降水由锋面降水和夏季风降水2个时段组成,降水集中期分别为5月第2候和6月第2候。南海夏季风爆发后,江门第1次出现的降水可看作是夏季风降水的开始,南海夏季风的不同爆发类型对江门夏季风降水的开始时间有不同影响。江门前汛期的锋面降水为大尺度抬升凝结降水,而具有热带性质的夏季风降水为对流性降水;由于降水性质的不同,导致两者在降水持续时间、降水形式等方面表现出差异。  相似文献   

12.
2012年华南前汛期降水特征及环流异常分析   总被引:5,自引:1,他引:4  
袁媛  任福民  王艳姣  孙冷  郭艳君 《气象》2012,38(10):1247-1254
2012年华南前汛期于4月第2候开始,6月第5候结束。前汛期降水经历了三个不同的阶段:第一阶段是4月第2候至5月第3候的降水集中期(锋面降水),江南大部和华南大部降水偏多25%以上,第二阶段是5月第4候至6月第2候的少雨期,华南中部和东部降水偏少50%以上,第三阶段是6月第3—5候的第二个降水集中期(季风降水),江南东南部至华南中西部降水偏多50%以上。对各阶段大气环流距平场的分析结果表明:华南前汛期开始后,偏强的乌拉尔山高压脊导致南下的冷空气偏强,偏强的低层副热带高压使得我国南方为整层水汽输送的异常辐合区,两者共同导致华南前汛期第一阶段的锋面降水较常年同期偏多;南海夏季风在爆发后偏弱和西北太平洋副热带高压(以下简称副高)持续3候异常偏北是导致第二阶段前汛期降水明显偏少的主要原因;第三阶段,南海夏季风异常偏强,副高南落并增强,以及孟加拉湾季风槽的偏强使得华南前汛期此阶段的季风降水偏多。  相似文献   

13.
利用NCEP/NCAR再分析资料研究了季节转换期间副热带高压结构的气候特征。在亚、非季风区 ,冬季副热带高压带是相对对称的 ,具有脊线连续的带状结构 ,脊面随高度增加向南倾斜 ;夏季副热带高压带中低层是间断的 ,高层是连续的 ,脊面随高度增加向北倾斜。副热带高压脊面倾斜受热成风关系的制约 ,总是倾向暖区。 5月份副热带高压形态变异最显著 ,不同地域副热带高压的结构、性质存在较大差异。夏季型副热带高压于 5月初首先出现在孟加拉湾东部 ,5月第 3候稳定建立在孟加拉湾东部、中南半岛及南海西部地区 ;5月第 4~ 5候在南海建立 ;6月第 1~ 2候在印度中部建立。夏季型副热带高压建立的 3个阶段与亚洲夏季风爆发的 3个阶段存在着较好的对应关系。孟加拉湾夏季风的建立在很大程度上取决于高空副热带高压脊面附近经向温度梯度的反转。对流层中上层副热带高压脊面附近经向温度梯度可以作为表征亚洲夏季风爆发的指标  相似文献   

14.
高原季风强弱对南亚高压活动的影响   总被引:17,自引:10,他引:7  
马振锋 《高原气象》2003,22(2):143-146
分析了高原季风强弱对夏季南亚高压活动和三峡库区旱涝的影响,揭示了如高原夏季风偏强(弱),育藏高原上空及其以东地区100hPa南亚高压也偏强(弱),位置偏北偏东(偏南偏西)。高原季风强年,南亚高压脊线6月北跳比多年平均早1候,8月南撤晚1~2侯;高原季风弱年。脊线北跳晚1~2候,南撤早1候。同时显示了高原夏季风强年,5~6月三峡库区降水随着南亚高压脊线北移而增多,7~8月三峡库区降水减少;高原夏季风弱年,主汛期前期库区降水少,后期降水略有增多。  相似文献   

15.
利用哈尔滨市1951 ~1998 年候降水量资料,用候降水量突变划分汛期,并对哈尔滨市汛期特征进行分析。哈尔滨市汛期可划分为:提前型、落后型;偏长型,偏短型;连续型、分段型。平均入汛期为6 月21 ~26 日,最早入汛期为5 月21 ~25 日,最晚入汛期为7 月21 ~26 日;平均出汛期为8 月26~31 日,最早出汛期为7 月6 ~10 日,最晚出汛期为10 月11 ~15 日。平均汛期长度为60d ,最长汛期为100d ,最短汛期为20d 。  相似文献   

16.
The interannual variations of summer surface air temperature over Northeast China (NEC) were investigated through a month-to-month analysis from May to August. The results suggested that the warmer temperature over NEC is related to a local positive 500-hPa geopotential height anomaly for all four months. However, the teleconnection patterns of atmospheric circulation anomalies associated with the monthly surface air temperature over NEC behave as a distinguished subseasonal variation, although the local positive height anomaly is common from month to month. In May and June, the teleconnection pattern is characterized by a wave train in the upper and middle troposphere from the Indian Peninsula to NEC. This wave train is stronger in June than in May, possibly due to the positive feedback between the wave train and the South Asian rainfall anomaly in June, when the South Asian summer monsoon has been established. In July and August, however, the teleconnection pattern associated with the NEC temperature anomalies is characterized by an East Asia/Pacific (EAP) or Pacific/Japan (PJ) pattern, with the existence of precipitation anomalies over the Philippine Sea and the South China Sea. This pattern is much clearer in July corresponding to the stronger convection over the Philippine Sea compared to that in August.  相似文献   

17.
Summary The evolution of geophysical parameters over Indian Ocean during two contrasting monsoon years 2002 (drought) and 2003 (normal) were studied using TRMM/TMI satellite data. Analysis indicates that there was a lack of total water vapour (TWV) build up over Western Indian Ocean (WIO) during May 2002 (drought) when compared to 2003 (normal). Negative (positive) TWV anomalies were found over the WIO in May 2002 (2003). In 2002, negative SST anomaly of ∼1.5 °C is found over entire WIO when compared to 2003. Anomalously high sea surface wind speed (SWS) anomaly over the South West Indian Ocean (SWIO) and WIO would have resulted in cooling of the sea surface in May 2002 in comparison to 2003. In 2003 the wind speed anomaly over entire WIO and Arabian Sea (AS) was negative, whereas sea surface temperature (SST) anomaly was positive over the same region, which would have resulted in higher moisture availability over these regions. A negative (positive) TWV anomaly over Eastern Arabian Sea (EAS) and positive (negative) anomaly over WIO forms a dipole structure. In the month of June no major difference is seen in all these parameters over the Indian Ocean. In July 2002 the entire WIO and AS was drier by 10–15 mm as compared to 2003. The pentad (5 day) average TWV values shows high (>55 mm) TWV convergence over EAS and Bay of Bengal (BoB) during active periods of 2003, which gives high rainfall over these regions. However, during 2002 although TWV over BoB was >55 mm but it was ∼45–55 mm over EAS during entire July and hence less rainfall. The evaporation has been calculated from the bulk aerodynamic formula using TRMM/TMI geophysical products. It has been seen that the major portion of evaporative moisture flux is coming from southern Indian Ocean (SIO) between 15 and 25° S. Evaporation in June was more over AS and SIO in 2003 when compared to 2002 which may lead to reduce moisture supply in July 2002 and hence less rainfall compared to July 2003.  相似文献   

18.
Climatological characteristics of subtropical anticyclone structure during seasonal transition are investigated based on NCEP/NCAR reanalysis data.The ridge-surface of subtropical anticyclone is defined by the boundary surface between westerly to the north and easterly to the south (WEB in brief).In Afro-Asian monsoon area,the subtropical high in troposphere whose ridgelines are consecutive in wintertime takes on relatively symmetrical and zonal structure,the WEB tilts southward with increasing height.In summer,the subtropical high ridgelines are discontinuous at low levels and continuous at upper levels,the WEB tilts northward from the bottom up.Under the constraint of thermal wind relation,the WEB usually tilts toward warmer zone.May is the period when subtropical high modality most significantly varies.The structure and properties of subtropical high during seasonal transition are different from area to area.A new concept "seasonal transition axis" is proposed based on formation and variation of the vertical ridge axis of subtropical anticyclone.The subtropical high of summer pattern firstly occurs over eastern Bay of Bengal in the beginning of May.then stabilizes over eastern Bay of Bengal,Indo-China,and western South China Sea in the 3rd pentad of May,it exists over the South China Sea in the 4th-5th pentad of May and establishes over central India in the 1st-2nd pentad of June.The three consequential stages when summer modal subtropical high occurs correspond to that of Asian summer monsoon onset,respectively.To a great extent,the summer monsoon onset over the Bay of Bengal depends on the reversal of meridional temperature gradient in vicinity of the WEB in upper troposphere.The meridional temperature gradient at middle-upper levels in troposphere can be used as a good indicator for measuring the seasonal transition and Asian monsoon onset.  相似文献   

19.
This study investigates the relationship between the soil temperature in May and the East Asian summer monsoon (EASM) precipitation in June and July using station observed soil temperature data over Northwest China from 1971 to 2000.It is found that the memory of the soil temperature at 80-cm depth can persist for at least 2 months,and the soil temperature in May is closely linked to the EASM precipitation in June and July.When the soil temperature is warmer in May over Northwest China,less rainfall occurs over the Yangtze and Huaihe River valley but more rainfall occurs over South China in June and July.It is proposed that positive anomalous soil temperature in May over Northwest China corresponds to higher geopotential heights over the most parts of the mainland of East Asia,which tend to weaken the ensuing EASM.Moreover,in June and July,a cyclonic circulation anomaly occurs over Southeast China and Northwest Pacific and an anticyclonic anomaly appears in the Yangtze and Huaihe River valley at 850 hPa.All the above tend to suppress the precipitation in the Yangtze and Huaihe River valley.The results also indicate that the soil temperature in May over Northwest China is closely related to the East Asia/Pacific (EAP) teleconnection pattern,and it may be employed as a useful predictor for the East Asian summer monsoon rainfall.  相似文献   

20.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SMMR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvions in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号