首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用台风年鉴资料、雨量站观测资料及ERA-interim 1 °×1 °分析资料等,对1980—2015年在广东珠江口以西(徐闻-珠海)登陆且继续偏西(北)行但引发距离登陆点较远的粤东地区出现暴雨(“西登东雨”)的一类严重不对称热带气旋暴雨特征进行了分析。结果表明:在珠江口以西登陆的热带气旋中有近一半会给粤东地区带来暴雨;其登陆点位置远近与粤东暴雨发生与否没有直接联系,即登陆点越靠近(珠江口)并不一定使粤东更易出现暴雨;其登陆强度越强也不一定使粤东出现暴雨可能性越大,但使粤东出现特别弱降水(< 10 mm)的热带气旋多集中在(强)热带风暴级别。进一步分析引发粤东暴雨的天气形势及要素特征表明,热带气旋东侧的低空东南急流、偏东急流和偏南急流以及边界层的辐合线(台风槽)是引发粤东出现暴雨的重要原因,西太平洋副热带高压(简称副高)西南侧和“方头”副高西侧是粤东暴雨的有利形势;相似的低层风场和中层形势场背景下,700~500 hPa的湿度条件会明显影响到粤东出现暴雨的可能性的大小。   相似文献   

2.
2011年9月14日-10月5日,“纳沙”和“尼格”2个台风先后登陆海南,均产生了较强的区域性暴雨或大暴雨.利用常规资料,对这2个台风的移动路径和暴雨形成机制进行了对比分析.分析结果表明,台风登陆后,由于副高形态及其演变的不同,使得两个台风路径变化不同.利用0.5°×0.5°NCEP全球再分析资料和常规气象要素、中尺度自动站和日本静止卫星0.05°×0.05°TBB等资料,综合分析登陆台风“纳沙”、“尼格”强度和结构差异对海南暴雨分布的影响.结果表明:台风中心附近环境风垂直切变密集带的跨度变化与台风强度相关,日平均海表温度与热带气旋(TC)强度维持或加强密切相关;登陆TC动力结构和水汽辐合的不对称分布导致台风暴雨落区和强度存在显著差异,强降水与局地发生的对流云对应较好时表现为明显的对流性降水,对降水有增幅作用.  相似文献   

3.
2010年第10号微型台风"莫兰蒂"登陆后在福建和浙江引发暴雨天气,本文利用NCEP再分析资料从天气形势、动力、热力等特征物理量对暴雨产生的机理进行了分析,结果表明:(1)按影响系统划分,福建暴雨是由台风环流本身引发的,浙江暴雨则是由台风残留低压和弱冷空气共同作用所造成。(2)台风登陆前夕强度增强及登陆后福建境内强度减...  相似文献   

4.
台风“风神”路径、强度及引发江西降水诊断分析   总被引:2,自引:2,他引:0  
利用NCEP 1°×1°再分析资料、T213分析资料和常规观测资料,从水汽条件、热力条件、动力条件等方面,对2008年第6号台风“风神”路径、强度变化的原因,及其对江西的影响进行分析。结果表明,台风路径与副高的强度和位置变化密切相关,台风移动方向与风场结构中强风速的风向一致。台风在海上强度减弱主要与水汽来源不足有关,登陆后还与冷空气侵入暖中心有关。由于强度减弱且西南季风不强,造成水汽来源不足,从而导致“风神”没有给江西造成大范围暴雨天气。其中的局地强降水天气发生在台风环流高能梯度锋区,这主要是由于干侵入引发对流性不稳定造成的。  相似文献   

5.
采用NCEP/NCAR全球对流层1°×1°再分析格点资料,选取6个登陆台风个例,分析了不同发展阶段台风大气边界层暖区变化的特征及其与强度变化的关系.结果表明:在台风的不同发展阶段,其大气边界层相对涡度场和温度场的结构有着明显的不同特征,暖中心与正涡中心的距离与台风强度为反相关关系,暖中心与正涡中心的距离越小,台风强度越强.  相似文献   

6.
冯晋勤  蔡菁  赖巧珍 《气象科技》2017,45(1):149-157
利用常规天气资料、NCEP 1°×1°再分析资料、地面降水资料以及福建新一代天气雷达资料对2012年"苏拉"台风登陆后引发福建西部大暴雨天气成因进行分析,结果表明:"苏拉"登陆后高空涡旋受大陆高压东侧偏北气流引导向偏南方向移动,同时,台风登陆后进入大的环境风垂直切变区并向切变左侧倾斜,使得台风南倾结构进一步加大。台风结构南倾为福建西部大暴雨区提供了良好的动力条件,"苏拉"自身带来的水汽及台风南侧西南气流为暴雨区提供了充足的水汽来源,高空冷空气入侵与低层的高温高湿区形成上冷下暖结构呈现出条件不稳定层结,有利于深厚湿对流产生,结合充分的水汽供应,出现大暴雨天气。大范围暖平流配合风速辐合,中高层冷空气入侵与低层西南暖湿空气结合以及低层的西南急流建立是三个强降水阶段对应的中尺度天气特征。  相似文献   

7.
利用常规观测资料以及卫星、多普勒天气雷达、NEEP 1°×1°6 h再分析资料,对0906号"莫拉菲"造成广东、广西、云南台风暴雨进行诊断对比分析.结果表明:暴雨区与台风西北象限强风速辐合区位置相对应,强风速中心值与其前部风速辐合越大,地面降水越强;台风云系边界越清晰、结构越密实,相应地面降水量越大,且闭合200 K ...  相似文献   

8.
登陆过程中台风高层暖心结构演变特征分析   总被引:2,自引:2,他引:0  
王尚宏  汤杰  雷小途 《气象》2018,44(5):612-620
采用美国国家环境预报中心NCEP提供的分辨率为0.5°的再分析资料和中国气象局上海台风研究所热带气旋最佳路径集,对1979—2010年于30°N以南登陆中国的台风进行合成并分析其高层暖心结构,主要结论如下:(1)登陆台风暖心在登陆前18h左右强度有较明显的加强趋势;(2)登陆阶段台风暖心有着明显的非对称性,向陆地侧的暖心面积更大;而在登陆方向两侧暖心结构也存在较弱的非对称性,登陆前暖心面积左侧大于右侧,登陆后暖心面积右侧大于左侧。(3)登陆台风暖心的温度梯度分布是不均匀的。越靠近暖心外围,温度梯度越大,越靠近暖心中心,温度梯度相对较小。当暖心强度变化后,暖心内层温度的变化率大于外层。(4)登陆过程中暖心强度在垂直方向的衰减比水平方向更为显著。(5)文中几种台风暖心特征的计算简便,物理含义明确,为实际业务提供了较为不错的定量化参考,方便理解台风暖心结构与台风强度变化之间的关系,具备一定的业务应用价值。  相似文献   

9.
用《台风年鉴》、《热带气旋年鉴》;浙江省68个常规气象站12 h间隔雨量资料以及欧洲中心(ECMWF)0.5°×0.5°分辨率ERA-Interim再分析资料对登陆浙江省的台风路径和暴雨影响进行分析,结果表明,1949—2018年平均0.61个/a台风登陆浙江,2004年有3个台风登陆浙江,为1949年以来最多。台风登陆浙江的最早日期为5月27日,最迟为10月7日;6月无台风登陆浙江,以8月份最多,占44%。登陆浙江台风在进入东海时其路径趋势可分为3类:1)西行登陆浙江类。台风在冲绳岛及以北区域偏西行进入东海,约50%这类台风会登陆浙江,一般在三门湾及以北登陆浙江后在内陆减弱消亡。2)西北行登陆浙江类。台风向西北方向移动进入东海,约24%这类台风会登陆浙江,绝大多数在冲绳岛到石垣之间进入东海;多数在登陆后转向东北入海。3)北上登陆浙江类。台风向偏北方向移动进入东海,约11%这类台风会登陆浙江,绝大多数在石垣以西进入东海,一般先登陆台湾后登陆浙江温岭以南沿海地区,之后在浙江东部北上转向入海。3类路径登陆台风其平均过程雨量的中心都出现在温岭,以第2类降水量最大,平均过程雨量中心达199 mm,而且24 h达特大暴雨的都在这类台风中,第1、第3类台风没有出现特大暴雨。台风登陆浙江时,丽水西部、杭州西南部、衢州地区出现暴雨的几率较小。  相似文献   

10.
颜玲  周玉淑  王咏青 《大气科学》2019,43(2):297-310
利用欧洲气象中心(ERA-interim)再分析资料以及中国气象局观测站点的实况降水观测结合CMORPH卫星反演的逐时降水资料,对比分析了路径类似的1513号台风Soudelor和1410号台风Matmo在登陆福建前后期间的降水分布特征以及造成登陆台风暴雨强度和落区差异的原因,得到以下初步结论:Soudelor和Matmo移动路径相似,但在登陆福建的过程中对浙、闽地区造成的降水强度和分布差异明显,如Soudelor造成的总降水强度比Matmo大,且Soudelor的强降水在登陆前主要分布在台风路径的右侧,台风中心的偏北方向,登陆以后主要在台风的偏北以及东北方向;而Matmo登陆前降水基本均匀分布在路径两侧,强降水区位于台风中心的西北方向,登陆福建以后向北移动的过程中强降水区转向台风中心的北边;不同的大尺度环流背景也会导致登陆过程中不同的降水分布特征,Soudelor影响期间副热带高压比较强盛,并阻断它与中纬度西风槽的作用,而Matmo登陆北上过程中逐渐减弱并汇入河北上空的西风槽中,所以登陆后期Matmo的降水比Soudelor强;Soudelor和Matmo台风登闽前后低层水汽输送及东风急流差异是导致大暴雨落区差异的原因之一,Matmo的水汽输送主要来自孟加拉湾及南海,而Soudelor登陆前东部有来自另一个台风Molave的水汽输送,登陆后强水汽输送通量区及水汽辐合带位于Soudelor偏北侧,这与Soudelor登陆造成的暴雨在中心偏北方向一致;南亚高压相对于台风的位置也会影响降水,Soudelor登陆时,大兴安岭上空大槽前的偏西风急流与南部高压西北侧的西南急流一起使得它登陆后减弱速度变缓,有利于台风暴雨的维持,而Matmo高空受急流造成的气旋性切变流场加速了台风的减弱;此外,台风自身的结构和强度变化以及登陆后维持时间不同也是造成两次过程降水差异的主要原因之一,台风暖心结构的强度以及台风高层暖心减弱的速度对台风降水有一定影响,但对登陆时台风暴雨的不对称分布影响较小;Soudelor登闽过程中,涡度场强度比Matmo大,且维持一个深厚的垂直对称结构,登闽后期附近的辐合上升气流主要位于中心东侧,而Matmo在登闽过程中,低层的强辐合区和上升运动区始终偏西,造成二者降水分布的不同。  相似文献   

11.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

12.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

13.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

14.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

15.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

16.
17.
<正>With the support of specialized funds for national science institutions,the Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration set up in October 2008 an experiment base for marine meteorology and a number of observation systems for the coastal boundary layer,air-sea flux,marine environmental elements,and basic meteorological elements at Bohe town,Maoming city,Guangdong province,in the northern part of the South China Sea.  相似文献   

18.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

19.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

20.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号