首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张邦林  曾庆存 《大气科学》1998,22(2):129-136
根据本文第一部分提出的概念、理论和方法,利用ECMWF客观分析的几个特定等压面上的位势高度场和东西风场资料,计算和分析了个别年份(1981年)北半球大气环流的季节变化,尤其是对亚洲西太平洋地区季节突变进行了详细的研究。(1)首先给出了1981年大气环流各季的一些基本特征。减去年平均后,发现冬季和夏季环流型相反,而春、秋季环流型则与冬季环流型几乎正交。(2)计算了各候平均场偏差和典型的冬季偏差场F'w的相似性系数Rw(t),分析它们的特征并加以比较,结果是半球尺度的大气环流过渡季节(春、秋)虽然短些,但突变性不很明显。(3)为了研究与行星尺度相联系的南北向季节推移,本文给出了纬圈平均偏差场的Rw(t)分布,发现在大多数纬度中,对流层大气环流的季节变化都有突变性,纬度越低,春季来临越早,秋季来临越迟。(4)为了研究大气中行星波,东西向环流结构的季节变化及调整,本文给出了按经圈平均偏差场的Rw(t)分布,发现在低空和对流层高层及平流层低层季风区内季节突变十分显著,鲜明地反映了季风环流和季节变化的关系。(5)最后,本文计算了北半球各个20o×10o经纬距分区域中的Rw(t)分布,发现在许多分区域中,季节突变都很明显,尤其是在亚洲和西太平洋季风区里,但突变的早晚随高度和区域而变,即有时空四维结构。总之,本文第一部分所提出的参数Rw(t)及其他一些概念和方法确能很好地描述大气环流的季节变化及其突变性。  相似文献   

2.
南亚高压季节变化中的正斜压环流转换特征   总被引:2,自引:0,他引:2  
利用1958~1997 年的 N C E P/ N C A R 再分析资料,采用将大气环流在垂直方向分解为正压和斜压环流两个分量的方法,讨论了南亚高压季节演变中的正斜压环流的转换特征。指出(1)夏季,南亚高压以斜压性为主,其斜压分量约占 70 % 的比重,冬季以正压性为主,其正压分量约占 70 % 的比重;(2)由冬季的正压性高压向夏季的斜压性高压的季节演变中,南亚高压是在其斜压分量环流的引导下移动的,即其斜压分量环流的变化超前于其自身的变化;(3)由夏季的斜压性高压向冬季的正压性高压的季节演变则相反,南亚高压是在其正压分量环流的引导下移动的。  相似文献   

3.
6月初,亚洲中高纬地区的气温迅速增暖后趋于稳定,大气环流由冬季环流转变为夏季环流。根据1951~2017年间各年亚洲中高纬地区春夏季节转换(以下简称季节转换)的时间,基于NCEP再分析资料和中国地区的观测资料,研究了季节转换发生早晚对梅雨期中国地区降水及环流的影响。在季节转换偏早(晚)年的梅雨期,对流层中层(500 hPa)高度距平场从东北亚中高纬、中国东北和日本以南地区出现“+ ? +”(“? + ?”)的经向波状结构。在850 hPa距平风场上,也有相近的波状结构。当东北亚脊偏强(弱)时,东北地区为气旋式(反气旋式)环流距平,西太平洋副热带为反气旋式(气旋式)距平。环流异常导致东北地区降水异常偏多(少),长江流域降水偏少(多)。本文还初步探讨了亚洲中高纬地区入夏时间的早晚如何影响梅雨期大气环流和中国东部降水异常的途径。在季节转换偏早(晚)年,东北亚高压脊建立较早(晚),强度偏强(弱),而且对应的东北亚脊异常往往可持续到梅雨期结束,从而有利于东亚沿岸 “+ ? +”(“? + ?”)经向波状环流及相应雨带的形成。  相似文献   

4.
用ECMWF1980-1983年资料讨论了亚洲季风区大气热源的季节内变化特点。分析表明,季节内变化显著区主要限于季风活跃区及其附近地区,并且存在季节、年际差异。EOF分析的主要空间型反映了印度到中南半岛一带、中国东部、西太平洋地区的振荡存在一定的关系。相应时间系数功率谱分析表明大气热源主要存在30-50天振荡,但1980年夏半年的1982-1983年ENSO事件期间(尤其是冬半年)这一振荡不显著。  相似文献   

5.
利用ICTP新推出的高分辨率第三代区域气候模式RegCM3,进行了有、无地形高度两个数值试验.通过分析两个试验模拟的环流场和降水场等的差异特征来研究东亚地区地形影响大气环流的季节变化特征.结果表明,东亚地形对大气环流的影响存在较明显的季节变化.冬季/夏季高层流场差异场的特点是以高原为中心成反气旋/气旋性环流形势,这种结构特征对西风急流的季节性北进南退起主导作用.位势高度差异场呈北高南低的分布形势,大致以30 °N为分界线,冬季/夏季呈"北弱南强","陆地低海洋高"/"北强南弱"、"陆地高海洋低"的分布特征,这种配置对西风急流越过高原后强度的增强减弱关系密切.此外,地形对大气的辐射加热作用的季节性变化以及海陆热力差异的季节性振荡也说明地形不仅能通过动力和热力作用来直接影响高低层的环流系统,也可能通过调节海陆热力差异来间接影响季风环流.  相似文献   

6.
热带大气季节内振荡的进一步分析   总被引:2,自引:1,他引:1  
利用ECMWF的格点资料对热带大气季节内振荡作了进一步分析研究,表明热带大气季节内振荡既有Kelvin波型扰动,也有Rossby波型扰动;影响热带大气季节内振荡移动的主要因素有扰动波型和积云对流活动的异常;伴随ElNino事件的发生,热带大气季节内振荡的动能急剧减小,而准定常扰动动能急剧增大,既反映了热带大气季节内振荡对ElNino的激发作用,也说明了在ElNino期间热带大气季节内振荡偏弱的原因。  相似文献   

7.
论大气环流的季节划分和季节突变 Ⅰ:概念和方法   总被引:13,自引:4,他引:13  
本工作系列讨论大气环流的季节划分和季节突变问题.本文是第一篇,提出普适的概念、理论和方法,使大气环流和其他气候场的季节划分和季节突变定义建立在客观定量的基础之上.首先用两个场的相关系数R作为其相似性度量,也可以用归范化的两个场之差的根方值d作为差异性的度量.当存在着冬、夏季的典型场F_n和F_s时,取任何时刻t函数F与F~*≡(F_w+F_s)/2之差F~'作为变量场,则其与F~'_w≡F_w-F~*的相关系数R_w(t)及标准根方差d_w(t)可以作为F与其冬季典型的相似性或差异性度量.R_w与d_w~2之间有一定关系,一般只研究R_w即可.(1)可以定义冬季对应于1≥R_w(t)>0.5,夏季为-1≤R_w(t)<-0.5,过渡季节为-0.5相似文献   

8.
利用1961—2019年黑龙江省冬季气温、NCEP再分析资料和环流指数资料,采用多变量经验正交函数分解、合成分析、相关分析等方法,分析黑龙江省冬季气温季节内变化及其环流异常特征,并进一步对比了主要环流因子在冬季气温季节内演变不同模态中的相对贡献。结果表明: 季节内变化是黑龙江省冬季气温变化的基本特征。黑龙江省冬季气温存在季节内一致变化、12月和翌年1—2月反位相变化、12月至翌年1月和2月反位相变化三个主要模态。当冬季气温处于第一模态分布一致偏暖(冷)时,环流呈现北极涛动(AO)正(负)位相的分布特征,东亚冬季风(EAWM)偏弱(强)。当冬季气温发生季节内冷暖转换时,季内极涡、高空急流、西伯利亚高压(SH)和EAWM强度、中高纬环流经向度等均有明显调整。第二模态1月和第三模态2月环流场分别呈现类似极地欧亚型(PEA)和东大西洋型(EA)遥相关的分布特征。AO、SH、EAWM、PEA和EA是冬季气温季节内演变的重要影响因子。  相似文献   

9.
利用NCEP/NCAR再分析数据集,CMAP降水资料及Hadley中心海温,进一步对东亚季风环流季节转变与亚太热力场之间的联系及可能机理进行了研究。首先选用250 hPa两个固定关键区的气温,计算全年逐候的亚太纬向热力差指数,结果表明其与赵平等采用各季不同关键区的APO指数高度一致,但该指数(下称APTD指数)可用于确定热力场季节转变的时间点。发现用APTD指数确定的季节转变时间点能表征东亚大气环流冬季型向夏季型的转变,环流的转变特征为:低层大陆冷高压东移人海,低空偏北风转为偏南风;中层东亚大槽东移减弱,副热带高压单体在菲律宾附近出现,中心显著加强;高层南亚高压从菲律宾以东移到中南半岛西部,西风急流和东风急流发生北跳,高空偏南风转为偏北风。大气环流场的季节转变和热力场联系紧密的可能机理是:在亚太热力场转变的背景下,低空南风的出现,首先改变经向风的垂直切变,触发垂直运动释放潜热,加快冬季加热型向夏季型转变,而夏季加热型又进一步推进环流的调整,促进低空南风高空北风的形成与加强,进而通过热力场和环流场的正反馈过程,最终建立起一个低空南风高空北风的季风经圈环流。最后指出该转变点的早晚与热带中东太平洋的海温异常有显著的正相关,这为短期气候预测提供了依据。  相似文献   

10.
利用1951~2020年中国观测站气温资料、NCEP/NCAR再分析资料和统计方法,分析了不同年代际时间尺度背景下我国冬季气温的季节内变化特征及相联系的大气环流异常。结果表明,1986年前、后为两个年代际时间尺度阶段,各阶段内前冬(12月)与后冬(1~2月)气温异常反位相年的比例均高于同位相年。1986年之前,季节内的优势空间模态为前冬全国冷(暖)转为后冬南方暖(冷)的可能性大,即南方地区季节内变率大;而1986年之后的优势空间模态为前冬北方冷(暖)转为后冬全国明显暖(冷)的可能性大,即北方地区季节内变率大。冬季气温的季节内变化显著受到冬季风系统关键环流季节内变化的影响。对应优势模态的正异常年份,1986年之前,欧亚中高纬地区对流层环流异常信号从前冬到后冬显著性减弱,其中西北太平洋地区对流层中高层的环流调整更明显,副热带高度场增强,热带东风急流北扩,前冬到后冬的环流调整有利于前冬全国大范围偏冷而后冬我国南方地区气温升高,造成南方地区季节内反位相变率增大。1986年之后,欧亚高中低纬地区的环流异常从前冬到后冬显著性增强,欧亚中高纬度环流发生较大调整,而低纬度的环流变化不大,北方地区前冬冷到后冬全国明显转暖,造成北方地区季节内反位相变率大。即副热带环流和中高纬度环流分别在两个年代际尺度阶段南方和北方的冬季气温季节内变率中起到主导作用。  相似文献   

11.
大气环流的季节变化和季风   总被引:45,自引:13,他引:32  
曾庆存  张邦林 《大气科学》1998,22(6):805-813
利用多年平均气候资料计算了全球各地和各等压面上的大气环流季节变率(即冬季和夏季环流之差或者1月和7月环流之差再除以年平均),发现在对流层低层环流有5个很突出的季节变率极大值的区域,分别位于热带和南北两半球的副热带和中-高纬度带(温-寒带),它们分别对应于经典所谓的热带季风区,太平洋、印度洋和大西洋的副热带高 压季节性移动区域,以及温-寒带气旋的风暴轴线区域。这5个区域也可分别称为热带季风区、副热带季风区和温-寒带季风区。季节变率带有鲜明的斜压性:在对流层低层热带季风和副热带季风虽相互连接然而仍然明显可分,但越往上,副热带季风一支就越往低纬移动,结果在200 hPa处与热带季风混合为一,形成为斜交赤道的带,和所谓的行星季风区相对应;再往上,在平流层上层,则南北两半球各在中纬度带有一完好的非常鲜明的季节变率极大值带,它们与黑夜急流的维持和崩溃有关。此外,文中还探索了各季节来临的时空分布以及年际变化等问题。  相似文献   

12.
BCC二代气候系统模式的季节预测评估和可预报性分析   总被引:6,自引:3,他引:3  
吴捷  任宏利  张帅  刘颖  刘向文 《大气科学》2017,41(6):1300-1315
本文利用国家气候中心(BCC)第二代季节预测模式系统历史回报数据,从确定性预报和概率预报两个方面系统地评估了该模式对气温、降水和大气环流的季节预报性能,并与BCC一代气候预测模式的结果进行了对比,重点分析了二代模式的季节可预报性问题。结果显示,BCC二代模式对全球气温、降水和环流的预报性能整体上优于一代模式,特别在热带中东太平洋、印度洋和海洋大陆地区的温度和降水的预报效果改进尤为明显。这些热带地区降水预报的改进,可以通过激发太平洋—北美型(PNA)、东亚—太平洋型(EAP)等遥相关波列提升该模式在中高纬地区的季节预报技巧。分析表明,厄尔尼诺和南方涛动(ENSO)信号在热带和热带外地区均是模式季节可预报性的重要来源,BCC二代模式能够较好把握全球大气环流对ENSO信号的响应特征,从而通过对ENSO预报技巧的改进有效地提升了模式整体的预报性能。从概率预报来看,BCC二代模式对我国冬季气温和夏季降水具备一定的预报能力,特别是对我国东部大部分地区冬季气温正异常和负异常事件预报的可靠性和辨析度相对较高。因此,进一步提高模式对热带大尺度异常信号和大气主要模态的预报能力、加强概率预报产品释用对提高季节气候预测水平具有重要意义。  相似文献   

13.
分析了NCEP资料和SAMIL-R42L9中热带大气季节内(30~60天)振荡(ISO)的季节变化特征及其与平均气候场季节变化的关系。NCEP资料的分析表明:热带地区大气ISO在空间分布上存在明显的季节变化,大气ISO的季节变化与平均背景场的季节变化有明显的一致性。在空间分布上,热带大气ISO的活动对暖的SST、强的对流活动、西风、强的降水和低层水汽辐合有很强的依赖性。大气环流模式SAMIL-R42L9基本能够再现热带大气ISO空间分布上的季节转换特征,尤其在动力场(纬向风)上表现得最为明显。但对基本气候态季节变化的模拟,对不同的物理量有明显的差异。模式结果表明:热带大气ISO动力因子的季节性比热力因子的季节性对平均背景场的依赖性更大,模式不能很好地反映NCEP资料表现出来的ISO对平均背景场的强依赖性,同时也说明热带大气ISO的季节性可能并不完全依赖于平均背景场的季节变化。  相似文献   

14.
利用1961~ 2007年NCEP/NCAR的再分析逐日资料,分析高原主体上空大气环流的季节变化和受到高原影响的东亚大型环流系统的季节变化,以此证明本文得到的“高原普适性划分方法”的合理性.得到的初步结论概括如下:高原主体上空的位势高度、风场、高空温度、降水的季节变化和高原普适性季节划分方法划分的高原四季变化一致,高原南亚高压、副热带高压、副热带西风急流的三个特征指数季节变化和高原普适性季节划分方法划分的高原四季变化一致,这些结论都说明高原普适性季节划分方法划分的高原四季是合理的;风场季节率(500hPa、100hPa)显著区随高度升高向赤道靠近,风场季节率的变化主要和东亚季风的变化有关,大气环流系统季节率的显著说明了大气环流的季节变化,同时也证明了高原普适性季节划分方法的合理性.  相似文献   

15.
文章研究关注了内蒙古冬季极端多雪气候事件的季节预测问题,在对大量降水观测资料、海温及大气环流场资料进行统计、分析、研究的基础上,确定了历史上58a(1960—2017年)内蒙古冬季极端多雪和少雪气候事件样本,通过对大气环流场的对比分析发现极端多雪或少雪冬季环流场特征显著不同,分析后确定了影响内蒙古冬季降雪的主要环流系统,包括西太平洋副热带高压、极涡、东亚大槽、环流E型及南方涛动等系统。同时,探索了对这些主要环流系统具有预测意义的来自海洋和大气场的预测信号,对预测信号关键区做了标准化定量提取,确定了预测信号综合指数分段判别阈值,给出了预测概念模型,取得了较好预测效果。  相似文献   

16.
论大气环流的季节划分和季节突变 I:概念和方法   总被引:16,自引:5,他引:16  
曾庆存  张邦林 《大气科学》1992,16(6):641-648
本工作系列讨论大气环流的季节划分和季节突变问题.本文是第一篇,提出普适的概念、理论和方法,使大气环流和其他气候场的季节划分和季节突变定义建立在客观定量的基础之上.首先用两个场的相关系数R作为其相似性度量,也可以用归范化的两个场之差的根方值d作为差异性的度量.当存在着冬、夏季的典型场F_n和F_s时,取任何时刻t函数F与F~*≡(F_w+F_s)/2之差F~'作为变量场,则其与F~'_w≡F_w-F~*的相关系数R_w(t)及标准根方差d_w(t)可以作为F与其冬季典型的相似性或差异性度量.R_w与d_w~2之间有一定关系,一般只研究R_w即可.(1)可以定义冬季对应于1≥R_w(t)>0.5,夏季为-1≤R_w(t)<-0.5,过渡季节为-0.5相似文献   

17.
回顾了青藏高原雪盖的季节内变化及其影响研究的新进展。高原大部分地区雪盖不稳定且持续时间短,导致高原雪盖具有显著的季节内快速变化特征。局地气温和降水的季节内变化是控制高原雪盖季节内变化的直接原因,这种直接关系是区域大气环流季节内活动的结果。高原雪盖季节内变化还与大尺度大气环流的季节内活动有关,热带季节内振荡、北极涛动和北大西洋涛动引起的大气季节内过程可解释部分高原雪盖季节内变率。高原雪盖季节内变化通过雪-反照率效应迅速对大气施加影响,雪盖造成的冷异常通过大气平流过程影响高原及其下游地区,造成东亚高空急流和东亚大槽增强。由于高原雪盖季节内变化的重要影响,数值预报中高原雪盖的初始场和预报场会影响次季节预报技巧。  相似文献   

18.
王晓春 《大气科学》1994,18(3):303-309
在已有研究成果的基础上,本文利用FGGE-IIIB资料及欧洲中期天气预报中心1980年至1988年七层全球分析资料,分析了1979至1988年南亚东南亚地区由冬至夏大气环流季节突变的状况。利用与这一地区主要天气系统密切相关某些大气环流指标来描述该地区的季节突变,并根据这些指标的逐候演变,信噪比及候平均环流形热确定了突变发生的时段,在些基础上,本文讨论了季节突变的多年状况,用多年资料证实了南亚,东南  相似文献   

19.
陈隽  孙淑清 《大气科学》1999,23(1):101-111
利用ECMWF资料挑选出一个强冬季风年(1986年)和一个弱冬季风年(1980年),通过个例分析对各种气象要素场及中高纬度大尺度环流在强弱冬季风年的差异特征进行比较。分析结果表明:东亚冬季风是全球大气环流的一个重要组成部分,冬季风异常关联着全球环流的异常;这种异常不仅在中高纬度环流中表现出来,而且在热带地区大尺度流场上尤为显著,强终冬季风所对应的长波槽脊分布,低纬对流特征,三维流场结构都是截然不同  相似文献   

20.
论大气环流的季节划分与季节突变 Ⅲ.气候平均情况   总被引:16,自引:2,他引:14  
薛峰  林一骅  曾庆存 《大气科学》2002,26(3):307-314
该文第Ⅰ部分定义了大气环流的季节划分和季节突变,第Ⅱ部分按此对个别年份的情况作了具体计算,第Ⅲ部分则利用NCEP/NCAR 1978~1997年气候平均资料做了实际计算,其结果与第Ⅱ部分大体一致,但更鲜明且更有代表性(是气候平均而非个别年份).主要结果有:(1)在对流层中下层,亚洲冬季风环流的建立始于欧亚大陆高纬西风带,夏季风环流的建立始于太平洋副高(副热带季风),以及由于马斯克林高压和澳大利亚冷高等几个大气活动中心的建立或加强(热带季风).(2)各季节的建立始于平流层,之后是对流层低层的极区和热带个别区域,并由上述层及地区分别向上、下层和中纬度地区发展,最终导致整个半球季节环流场的建立.(3)季节突变最强在平流层,分别位于两半球的热带到副热带以及高纬到极地,其中从冬到夏的突变明显强于从夏到冬的突变,而对流层的季节突变较平流层偏弱,主要位于热带到副热带的中上层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号