首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
2021年8月9日,IPCC发布了第六次评估报告(AR6)第一工作组报告,报告第三章“人类活动对气候系统的影响”定量评估了人类活动对气候系统的影响程度以及气候模式对观测到的平均气候、气候变化和气候变率的模拟性能。报告基于气候系统的多个圈层变量的综合评估明确指出,毋庸置疑的是,自工业化以来人为影响已经使大气、海洋和陆地升温;支撑本次评估的国际耦合模式比较计划第六阶段(CMIP6)气候模式模拟的大多数大尺度气候指标的近期平均气候,相比前一次评估报告(AR5)中的CMIP5模式结果有所改进。报告在更广泛的领域和区域提供了更多证据表明气候系统中的人类活动影响,但受制于观测、模式与过程认知的不足,在大气、海洋、冰冻圈、生物圈及气候变率模态的多个指标变化中人为影响的贡献方面仍然存在不确定性甚至缺少研究。  相似文献   

2.
全球变暖中的科学问题   总被引:5,自引:0,他引:5  
2013年各国政府间气候变化专门委员会(IPCC)第一工作组发布了第五次气候变化科学评估报告,以大量的观测分析和气候模式模拟证据,继续强调由于人类排放增加,全球正在变暖,未来将继续变暖的观点。本文综述研究全球变暖的几个深层次的科学问题,即多套全球气温观测资料的差异、不同标准气候态时段的作用、20世纪全球变暖的检测和归因及未来全球气温变化的走向,以此提出需进一步研究的科学问题。结果表明;需要进一步提高观测资料的质量;注意不同标准气候态时段对应的数值的不同;应进一步改善气候模式模拟年代际变率的能力及研究近15 a全球变暖减缓和停滞的原因,从而改善气候模式的模拟效果;造成预估未来全球气候变化的不确定性主要来自气候模式的差异、未来排放情景的差异及气候系统内部变率影响和自然外强迫的作用。  相似文献   

3.
气候变化科学方面的几个最新认知   总被引:1,自引:0,他引:1  
IPCC第六次评估报告(AR6)第一工作组报告主要从以下几个方面的进展提升了我们对气候系统变化、气候变化原因以及预估未来气候系统变化等方面的认知,对过去气候变化及其与人类活动的关系有了更加清晰、可靠的认识。综合多重证据评估指出,全球气候正经历着前所未有的变化;包括极端事件在内的归因进展已把人类活动对气候系统影响的认识从大气圈扩展到水圈、冰冻圈和生物圈,进一步强化了人类活动影响全球和区域气候的认识;有关区域气候变化信息的内容更加丰富,与各行业和敏感地区的气候变化影响联系更加紧密,使这些信息能更好地为气候变化风险评估和气候变化区域适应提供支持;气候模式和约束预估方法的发展以及对气候敏感度认识的深化,减少了未来不同排放情景下全球地表温度(Global Surface Temperature,GST)、海平面上升和海洋热含量的变化预估的不确定性。这份最新报告对我国提升气候变化研究水平和防灾减灾应对能力具有十分重要的指导意义。  相似文献   

4.
使用NASA/NCAR有限区域大气环流模型FvGCM结果驱动高分辨率区域气候模式RegCM3 (20 km),进行1961~1990年当代气候模拟(控制试验)和2071~2100年IPCC A2排放情景下未来气候模拟(A2情景模拟试验)。将RegCM3径流模拟结果同大尺度汇流模型LRM [分辨率0.25°(纬度)×0.25°(经度)]相连接,模拟预估未来气候变化对我国黄河流域水文过程的影响。结果表明:相对于当代气候,未来黄河流域呈现气温升高、降水增加(夏季7~8月降水减少)和蒸发增大的趋势,且空间分布极不均匀,造成河川径流在5~10月减少,加剧流域夏季的水资源短缺;未来气温升高使得融雪径流增加,可能导致更早和更大的春季径流,使径流过程发生季节性迁移,引起黄河流域水资源年内分配发生变化。  相似文献   

5.
IPCC第六次评估报告(AR6)第一工作组报告提出了基于“产生影响的气候因子”(CID)的气候变化评估框架,以一组影响社会或生态系统的气候状态为基础进行气候变化评估。这个CID评估框架有7个类型,33个气候因子,每个因子可以针对被影响对象采用不同的评估指标。CID变化具有时间尺度差异性与不可逆性、突变性与临界点、凸现时间、复合性以及受影响主体依赖性等重要特征。基于CID的气候变化评估框架有助于更客观、中立、全面地评估气候变化给不同部门带来的影响和风险。  相似文献   

6.
采用第五次耦合模式比较计划(Coupled Model Intercomparison Project Phase 5,CMIP5)高分辨率全球统计降尺度预估数据集,针对近期(2020—2039年)、中期(2040—2059年)和长期(2080—2099年),以及全球1.5℃和2℃温升阈值,预估了青藏高原地区平均气温和降水、极端气温和极端降水的变化,定量估算了预估结果的不确定性来源。结果表明:(1)在RCP4.5和RCP8.5情景下,21世纪青藏高原地区平均气温和降水、极端气温和极端降水强度均显著增加,最长连续干旱天气减少。高原气候变化幅度超全球平均,至21世纪末,模式集合预估的气候变化幅度介于全球平均的1.5~3倍。(2)青藏高原地区受0.5℃额外增温的显著影响,年均气温、极端高温和极端低温均显著升高,平均及极端强降水均显著增加。(3)排放情景的选择对近期气候预估影响小,但对长期影响大。在相同排放情景下,内部变率主导了近期高原平均气温预估的不确定性,但至长期其贡献降至10%以下。模式和内部变率的不确定性对降水预估均有贡献,且都随时间减小,最大不确定性中心位于西部和北部边缘,噪声与信号比大于6。  相似文献   

7.
长期气候变化——IPCC第五次评估报告解读   总被引:9,自引:0,他引:9  
<正>IPCC第五次评估报告(AR5)~①中关于长期气候变化的预估主要基于全球耦合模式比较计划第五阶段(CMIP5)的46个地球系统模式结果,在对模式、情景及不确定性介绍的基础上,给出了21世纪及其后更远时期的气候变化预估结果。与第四次评估报告(AR4)及全球耦合模式比较计划第三阶段(CMIP3)不同的是,AR5预估所使用的温室气体排放情景为典型浓度路径(RCP,AR4主要使用的是SRES),但在相似温室气体浓度的情况下,两者给出的未来气候变化结果差别不大。  相似文献   

8.
利用国家气候中心发布的中国地区气候变化预估数据集中的全球气候模式加权平均集合数据,分析了未来温室气体中等排放情景下(SRESA1B),青海高原不同地区未来气候变化趋势,并分析了2020时段和2050时段青海高原不同地区的气候特点,分析结果表明:2001—2100年青海各地气温均呈明显的增加趋势,全省平均增温率为4.09℃/100年,年降水量呈增多趋势,全省平均变化率为62.63mm/100年。与气候基准年相比,2020年全省年平均气温升高1.44℃,全省平均降水距平百分率为4.18%;2050年全省平均升温幅度为2.63℃,全省平均降水距平百分率为8.75%。由于目前全球气候模式的分辨率还较低,气候模式在诸多方面还有待完善,因此所提供的未来情景数据存在一定的不确定性。  相似文献   

9.
基于CMIP5资料的云南及周边地区未来50年气候预估   总被引:6,自引:1,他引:5  
利用CRU(Climatic Research Unit)高分辨率观测数据及云南省124站资料,检验了参与IPCC AR5(政府间气候变化专门委员会第5次评估报告)的7个全球海气耦合模式(Coupled Model Intercomparison Program 5,CMIP5)及模式集合平均对云南及周边地区气温和降水的模拟性能,同时进行该区域不同温室气体排放量情景下2006~2055年的气候预估。结果表明:全球海气耦合模式对该区域气温和降水气候场空间分布、气温的线性趋势和春、夏季降水的年代际振荡特征具有一定的模拟能力,且模式集合能力优于单一模式,气温模拟优于降水模拟,但春、夏季的降水好于其他季节,使得全年的总降水好于秋、冬两季。对未来情景预估表明,研究区域未来50年气温呈现显著的线性上升趋势,降水量保持年代际振荡特征并有所增加,2020年之前我国云南及其南部区域将经历相对的干旱时期。  相似文献   

10.
根据共享社会经济情景(SSPs)分为“双碳”路径(SSP1-1.9、SSP1-2.6、SSP2-4.5、SSP4-3.4、SSP4-6.0)和“高碳”路径(SSP3-7.0、SSP5-8.5)。在碳达峰(2028—2032年)和碳中和(2058—2062年)两个时期,采用5个气候模式,7个情景驱动SWAT水文模型,分析赣江流域径流演变特征,主要结论如下:1961—2017年赣江流域观测到的年均气温以0.17℃/(10 a)的速率呈显著上升趋势(p<0.01),降水以17 mm/(10 a)的速率呈不显著上升。“双碳”和“高碳”路径下,2021—2100年赣江流域均呈现暖湿态,气温持续变暖,降水有所增加;碳达峰、碳中和时期,“双碳”路径下年径流呈现增加趋势;“双碳”路径下,月径流在汛期呈现增加趋势,枯水期在SSP1-1.9、SSP1-2.6、SSP2-4.5、SSP4-3.4下呈现增加趋势,在SSP4-6.0下呈现减少趋势。“双碳”路径下极端水文事件强度将可能小于“高碳”路径。  相似文献   

11.
IPCC第六次评估报告第一工作组报告第九章综合评估了与海平面相关的最新监测和数值模拟结果,指出目前(2006—2018年)的海平面上升速率处于加速状态(3.7 mm/a),并会在未来持续上升,且呈现不可逆的趋势。其中低排放情景(SSP1-1.9)和高排放情景(SSP5-8.5)下,到2050年,预估全球平均海平面(GMSL)分别上升0.15~0.23 m和0.20~0.30 m;到2100年,预估GMSL分别上升0.28~0.55 m和0.63~1.02 m。南极冰盖不稳定性是影响未来海平面上升预估的最大不确定性来源之一。区域海平面变化是影响沿海极端静水位的重要因素。  相似文献   

12.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

13.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC_CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC_CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC_CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC_CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

14.
This paper applies the newest emission scenarios of the sulfur and greenhouse gases, namely IPCC SRES A2 and B2 scenarios, to investigate the change of the North China climate with an atmosphere-ocean coupled general circulation model. In the last three decades of the 21st century, the global warming enlarges the land-sea thermal contrast, and hence, causes the East Asian summer (winter) monsoon circulation to be strengthened (weakened). The rainfall seasonality strengthens and the summer precipitation increases significantly in North China. It is suggested that the East Asian rainy area would expand northward to North China in the last three decades of the 21st century. In addition, the North China precipitation would increase significantly in September. In July, August, and September, the interannual variability of the precipitation enlarges evidentlv over North China. implying a risk of flooding in the future.  相似文献   

15.
Summary We use the regional climate model RegCM nested within time-slice atmospheric general circulation model experiments to investigate the possible changes of intense and extreme precipitation over the French Maritime Alps in response to global climate change. This is a region with complex orography where heavy and/or extended precipitation episodes induced catastrophic floods during the last decades. Output from a 30-year simulation of present-day climate (1961–1990) is first analysed and compared with NCEP reanalysed 700 hPa geopotential heights (Z700) and daily precipitation observations from the Alpine Precipitation Climatology (1966–1999). Two simulations under forcing from the A2 and B2 IPCC emission scenarios for the period 2071–2100 are used to investigate projected changes in extreme precipitation for our region of interest. In general, the model overestimates the annual cycle of precipitation. The climate change projections show some increase of precipitation, mostly outside the warm period for the B2 scenario, and some increase in the variability of the annual precipitation totals for the A2 scenario. The model reproduces the main observed patterns of the spatial leading EOFs in the Z700 field over the Atlantic-European domain. The simulated large scale circulation (LSC) variability does not differ significantly from that of the reanalysis data provided the EOFs are computed on the same domain. Two similar clusters of LSC corresponding to heavy precipitation days were identified for both simulated and observed data and their patterns do not change significantly in the climate change scenarios. The analysis of frequency histograms of extreme indices shows that the control simulation systematically underestimates the observed heavy precipitation expressed as the 90th percentile of rainday amounts in all seasons except summer and better reproduces the greatest 5-day precipitation accumulation. The main hydrological changes projected for the Maritime Alps consist of an increase of most intense wet spell precipitation during winters for both scenarios and during autumn for the B2 scenario. Case studies of heavy precipitation events show that the RegCM is capable to reproduce the physical mechanisms responsible for heavy precipitation over our region of interest.  相似文献   

16.
Climate change in the twenty-first century, projected by a large ensemble average of global coupled models forced by a mid-range (A1B) radiative forcing scenario, is downscaled to Climate Divisions across the western United States. A simple empirical downscaling technique is employed, involving model-projected linear trends in temperature or precipitation superimposed onto a repetition of observed twentieth century interannual variability. This procedure allows the projected trends to be assessed in terms of historical climate variability. The linear trend assumption provides a very close approximation to the time evolution of the ensemble-average climate change, while the imposition of repeated interannual variability is probably conservative. These assumptions are very transparent, so the scenario is simple to understand and can provide a useful baseline assumption for other scenarios that may incorporate more sophisticated empirical or dynamical downscaling techniques. Projected temperature trends in some areas of the western US extend beyond the twentieth century historical range of variability (HRV) of seasonal averages, especially in summer, whereas precipitation trends are relatively much smaller, remaining within the HRV. Temperature and precipitation scenarios are used to generate Division-scale projections of the monthly palmer drought severity index (PDSI) across the western US through the twenty-first century, using the twentieth century as a baseline. The PDSI is a commonly used metric designed to describe drought in terms of the local surface water balance. Consistent with previous studies, the PDSI trends imply that the higher evaporation rates associated with positive temperature trends exacerbate the severity and extent of drought in the semi-arid West. Comparison of twentieth century historical droughts with projected twenty-first century droughts (based on the prescribed repetition of twentieth century interannual variability) shows that the projected trend toward warmer temperatures inhibits recovery from droughts caused by decade-scale precipitation deficits.  相似文献   

17.
This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years.It is shown that observed climate change in China bears a strong similarity with the global average.The country-averaged annual mean surface air temperature has increased by 1.1℃over the past 50 years and 0.5-0.8℃over the past 100 years,slightly higher than the global temperature increase for the same periods.Northern China and winter have experienced the greatest increases in surface air temperature.Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable,with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase,and North China a severe drought.Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings,show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases,while the temperature change of the first half of the 20th century may be due to solar activity,volcanic eruptions and sea surface temperature change.A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC(National Climate Center,China Meteorological Administration)and the IAP(Institute of Atmospheric Physics,Chinese Academy of Sciences),as well as 40 models developed overseas,indicate a potential significant warming in China in the 21st century,with the largest warming set to occur in winter months and in northern China.Under varied emission scenarios,the country-averaged annual mean temperature is projected to increase by 1.5-2.1℃by 2020,2.3-3.3℃by 2050, and by 3.9-6.0℃by 2100,in comparison to the 30-year average of 1961 1990.Most models project a 10% 12% increase in annual precipitation in China by 2100,with the trend being particularly evident in Northeast and Northwest China,but with parts of central China probably undergoing a drying trend.Large uncertainty exists in the projection of precipitation,and further studies are needed.Furthermore,anthropogenic climate change will probably lead to a weaker winter monsoon and a stronger summer monsoon in eastern Asia.  相似文献   

18.
Three statistical downscaling methods are compared with regard to their ability to downscale summer (June–September) daily precipitation at a network of 14 stations over the Yellow River source region from the NCEP/NCAR reanalysis data with the aim of constructing high-resolution regional precipitation scenarios for impact studies. The methods used are the Statistical Downscaling Model (SDSM), the Generalized LInear Model for daily CLIMate (GLIMCLIM), and the non-homogeneous Hidden Markov Model (NHMM). The methods are compared in terms of several statistics including spatial dependence, wet- and dry spell length distributions and inter-annual variability. In comparison with other two models, NHMM shows better performance in reproducing the spatial correlation structure, inter-annual variability and magnitude of the observed precipitation. However, it shows difficulty in reproducing observed wet- and dry spell length distributions at some stations. SDSM and GLIMCLIM showed better performance in reproducing the temporal dependence than NHMM. These models are also applied to derive future scenarios for six precipitation indices for the period 2046–2065 using the predictors from two global climate models (GCMs; CGCM3 and ECHAM5) under the IPCC SRES A2, A1B and B1scenarios. There is a strong consensus among two GCMs, three downscaling methods and three emission scenarios in the precipitation change signal. Under the future climate scenarios considered, all parts of the study region would experience increases in rainfall totals and extremes that are statistically significant at most stations. The magnitude of the projected changes is more intense for the SDSM than for other two models, which indicates that climate projection based on results from only one downscaling method should be interpreted with caution. The increase in the magnitude of rainfall totals and extremes is also accompanied by an increase in their inter-annual variability.  相似文献   

19.
Dynamical downscaling of global climate simulations is the most adequate tool to generate regional projections of climate change. This technique involves at least a present climate simulation and a simulation of a future scenario, usually at the end of the twenty first century. However, regional projections for a variety of scenarios and periods, the 2020s or the 2050s, are often required by the impact community. The pattern scaling technique is used to estimate information on climate change for periods and scenarios not simulated by the regional model. We based our study on regional simulations performed over southern South America for present climate conditions and two emission scenarios at the end of the twenty first century. We used the pattern scaling technique to estimate mean seasonal changes of temperature and precipitation for the 2020s and the 2050s. The validity of the scalability assumptions underlying the pattern scaling technique for estimating near future regional climate change scenarios over southern South America is assessed. The results show that the pattern scaling works well for estimating mean temperature changes for which the regional changes are linearly related to the global mean temperature changes. For precipitation changes, the validity of the scalability assumption is weaker. The errors of estimating precipitation changes are comparable to those inherent to the regional model and to the projected changes themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号