首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一次超级单体分裂过程的雷达回波特征分析   总被引:2,自引:0,他引:2  
2007年7月9日16—20时(北京时)在河北南部非常罕见地观测到了多个超级单体风暴在相近地点连续生成及分裂的过程。利用石家庄新乐SA型多普勒天气雷达资料、地面自动站及常规天气资料,对超级单体分裂过程及环境条件做了分析。表明这次的多个超级单体风暴是在强的对流有效位能和垂直风切变的环境条件下发生的。由于垂直风切变矢量方向随高度逆时针旋转,因此,分裂后左移的反气旋风暴得到加强,发展成为具有深厚中反气旋的左移超级单体风暴,而右移的气旋性风暴受到抑制,与理论研究结果一致。但也有不同之处,沿着地面高湿区内热力边界偏暖一侧移动的气旋性风暴没有受到明显抑制,有利的地面环境条件抵消了气旋性风暴受抑制的程度,使气旋性风暴能够持续更长的时间。该强烈发展的带有明显中反气旋的超级单体风暴具有低层钩状回波和入流缺口、中高层有界弱回波区及位于有界弱回波区之上的高层具有反射率因子核心和强烈风暴顶辐散,与经典的气旋式右移超级单体风暴的回波特征非常类似,除了是反气旋涡旋外,其回波特征与气旋式超级单体近似成镜像。风暴分裂是在单体形成不久的发展初期开始的。分裂先从中高层开始,然后迅速向下延伸。分裂后相对于0—6 km风切变矢量,左侧的单体为反气旋左移风暴,右侧的为气旋性右移风暴。  相似文献   

2.
利用常规观测资料、济南多普勒雷达资料、FY-2G资料和加密自动站等资料分析了2016年6月14日一次在华北冷涡背景下发生的超级单体风暴生成及分裂过程,对超级单体分裂过程的雷达回波特征和环境条件进行了详细的分析。结果表明,超级单体风暴发生在地面中尺度辐合线附近,中层短波槽前,高空有中空急流的环境下,触发的对流云团向偏东方向移动中,在不稳定层结和较强的垂直风切变作用下,对流风暴发生分裂且右移性对流风暴发展加强。风暴分裂后环境风左侧的风暴单体并没有受到明显抑制,中尺度辐合线附近的露点锋生抵消了反气旋性风暴的受抑制程度,使反气旋性风暴能有所加强并持续更长的时间。环境风右侧的风暴单体发展加强,且持续时间长达2 h。风暴分裂是在单体发展的初期开始,分裂先从中高层开始,然后向下延伸,分裂后相对于环境风方向,左侧单体为反气旋性左移风暴,右侧为气旋性右移风暴。气旋性右移风暴强烈发展为具有低层的入流缺口、中高层的弱回波区及风暴顶的强辐散,与经典超级单体风暴回波特征类似。分裂后右移风暴伴有深厚持久的中气旋,其起源于中层4~5 km,然后向上和向下发展,最强旋转出现在高层,旋转速度达29 m/s,这与典型超级单体内中气旋都是中层旋转最强有所不同。  相似文献   

3.
江苏沿江地区一次强冰雹天气的中尺度特征分析   总被引:11,自引:2,他引:9  
徐芬  郑媛媛  肖卉  慕熙昱 《气象》2016,42(5):567-577
利用常规气象资料、卫星、多普勒天气雷达、风廓线雷达等资料,对发生在江苏沿江地区一次强冰雹天气形势背景、环境热动力条件、强冰雹发生前地区环境场变化、超级单体雷达回波中尺度特征等进行了详细分析。结果表明:(1)在东北冷涡槽后干冷气流影响下,中高层干冷、低层暖湿的不稳定层结,高低空急流以及地面辐合系统的配置为此次强对流天气的产生提供了有利热动力条件;高CAPE值、逆温层、低层适当水汽条件及较强的深层垂直风切变有利于强冰雹天气的发生。(2)利用多普勒天气雷达、风廓线仪数据反演垂直分布的物理量场(平均散度、平均垂直速度、相对风暴螺旋度、垂直风切变)能够反映本站上空环境场的快速变化情况:强对流系统移入本站前雷达站上空逐渐调整为低层辐合、中高层辐散的风场配置结构,螺旋度和垂直风切变数值逐渐增加,表明环境场有利于强对流系统的维持发展。(3)强降雹超级单体除具有三体散射现象、入流缺口等雷达回波中尺度特征外,持久深厚的中气旋存在造成了显著的有界弱回波区和高悬垂强回波区。应用双多普勒雷达风场反演技术揭示了超级单体内部环流结构:低层气旋性旋转,中层旋转加强,高层风场辐散。超级单体内部涡旋特征的出现和维持有利于支撑空中大冰雹的增长。  相似文献   

4.
2012年4月开汛后广东省接连出现强对流天气,尤其是冰雹日数更是超过历史同期平均。本文利用常规天气观测资料和雷达、自动站等非常规资料对广东首次观测到的风暴分裂中左移超级单体风暴和飑线内超级单体风暴引发的两次强对流天气过程进行了对比分析。结果表明:"4·10"冰雹和雷雨大风天气是由局地强烈加热产生的"热雷暴"发展成超级单体风暴造成的;"4·12"冰雹、雷雨大风和短时强降水天气由飑线及飑线内超级单体风暴造成的,其产生于切变线、较强冷空气南下过程中的低层暖平流和中层冷槽共同作用的环境条件下,较强的平流过程使垂直风切变明显增大;两次过程中0℃层高度都低于4月当地0℃层高度平均值。风切变矢量随高度的变化决定了左移和右移风暴的发展趋势,"4.10"风切变矢量随高度逆时针变化,使风暴分裂后左移风暴得以发展成超级单体;"4·12"风切变矢量随高度顺时针变化,有利于有组织风暴即飑线和飑线内超级单体的形成和发展,超级单体向承载层平均风的右侧运动。左移超级单体回波具有中反气旋、弱回波区和旁瓣回波及强回波中心位于其移动方向左侧等特点;飑线内超级单体的中气旋、弱回波区和强回波中心位于回波移动方向右侧,三体散射长钉长度和中层辐合厚度都很大,后侧下击暴流产生了31.1 m·s~(-1)地面强风。  相似文献   

5.
2010年福建一次早春强降雹超级单体风暴对比分析   总被引:3,自引:0,他引:3  
利用探空、地面资料以及建阳、龙岩、长乐三部新一代天气雷达资料,对2010年3月5日福建中北部地区5cm强降雹的两个超级单体风暴进行了对比分析。结果表明,干暖盖、强垂直风切变、中高层正涡度区及地面中尺度低压为超级单体的形成提供了良好的环境场。两个超级单体都是由多单体合并后发展起来的,在成熟阶段以右移为主,属长寿命右移风暴:第一个超级单体在发展过程中由于地形作用和新单体的并入经历了3次加强过程,低层出现明显的钩状回波、中高层三体散射特征;第二个超级单体经历了多单体风暴—超级单体风暴—多单体风暴3个阶段,成熟阶段低层呈现出明显的倒"V"形回波特征,中高层有明显向右伸展的云帖。两个超级单体风暴的中气旋都是由中层发展起来,随着中气旋强度不断加强和厚度加大,最强切变中心突降时出现冰雹、大风强对流天气。通过对第一个超级单体中气旋流场分析,发现风暴前、后侧的下沉气流与低层入流形成了明显的辐合旋转作用,下沉的干冷气流进一步推动低层的暖湿入流,形成强烈的上升气流,并在风暴顶形成强辐散,使得风暴长时间维持。第二个超级单体在风暴减弱阶段,风暴右侧出现中气旋分裂,之后减弱、消失。产生强对流天气时,中高层维持高反射率因子,出现三体散射现象、风暴顶强烈辐散以及较大的VIL密度等特征。  相似文献   

6.
为研究降雹超级单体风暴的三维结构特征,利用厦门、龙岩、梅州3部新一代天气雷达(CINRAD/SA)基数据,采用基于动态地球坐标系的双雷达和三雷达三维风场反演技术,分析了2016年4月8日傍晚福建省南部漳州地区出现的一次冰雹过程的回波强度、三维风场及相关物理量分布变化。主要结果为:(1)冰雹云初生、发展阶段,低层水平流场出现气旋性辐合,云体内部形成较强的上升运动。(2)冰雹云强盛阶段,回波顶高度达16 km,其中大于60 dBz的回波高度由5.3 km发展至9 km,最强回波达74.5 dBz,伴随出现最长达25 km的三体散射长钉回波和32.7 km的旁瓣回波。低层水平维持气旋性流场的同时,高层出现反气旋性流场。4-8 km高度内,大于20 m/s的强上升气流持续近37 min。最大垂直速度达51.06 m/s,出现在超级单体悬垂部(约7.5 km高度处)。(3)降雹时段,出现明显的下沉气流。降雹超级单体的三维流场结构表现为:风暴移向前沿低层气旋性气流进入风暴后逐渐倾斜上升,到达风暴顶形成反气旋性气流,并逐渐向下形成下沉气流。(4)系统减弱阶段,出现系统性下沉气流,强回波底及地。双雷达和三雷达能较好地反演降雹超级单体的三维风场精细结构,有助于加深对冰雹云结构的认识进而提高冰雹预报能力。  相似文献   

7.
海南一次超级单体引发的强烈龙卷过程观测分析   总被引:7,自引:3,他引:4  
郑艳  俞小鼎  任福民  蔡亲波 《气象》2017,43(6):675-685
利用常规高空地面观测、海南省区域加密自动站、海口多普勒雷达、海口风廓线雷达以及风云2G高分辨可见光云图资料对2016年6月5日海南省文昌市一次EF2级龙卷过程进行分析。结果表明:(1)这次龙卷过程发生在副热带高压边缘、500 hPa槽前、850 hPa切变线和地面热低压的南侧,是由超级单体引发的;由于海陆风效应而显著增大的0~2 km垂直风切变,较低的抬升凝结高度,随着白天地面太阳辐射加热迅速增大的CAPE值为超级单体风暴的生成提供了有利的环境条件。(2)超级单体是在东移飑线的东侧,由β中尺度海风锋辐合线和雷暴外流边界触发并加强的,沿着海风锋辐合切变线自东向西传播,与风暴承载层平均风向相反,即后向传播;超级单体具有勾状回波、中高层回波悬垂、中气旋和类似龙卷式涡旋特征(TVS)的小尺度强切变等特征,中层中气旋向低层延伸加强期间龙卷漏斗云生成、触地,小尺度强切变自中层同时向上、向下发展时龙卷达到最强;龙卷发生在勾状回波低层反射率因子最大梯度区域靠近弱回波区域一侧,也是小尺度强切变(类TVS)所在位置;(3)海风锋辐合线与超级单体的下沉气流外流边界合并,形成位于超级单体南侧的阵风锋,从而形成由东指向西的水平涡管,该水平涡管在钩状回波旁的弱回波区被上升气流扭曲拉伸,形成低层中气旋,超级单体南侧的阵风锋与东移的飑线阵风锋相遇而加强的地面辐合,有助于低层中气旋获得拉伸旋转加速而形成龙卷。  相似文献   

8.
一例长生命史雷暴云分裂过程的回波特征   总被引:9,自引:8,他引:1  
在对平凉冰雹云演变规律研究中,发现一例长生命史强雷暴云分裂成两个不同移动方向的单体雹云。结合探空资料和环境风场,分析了此个例强雷暴云分裂过程的回波特征。结果表明,在强风切变环境中,u与v分量呈反相关,且随高度增强,低层1~3km为弱气旋旋转,中层3~8km为强反气旋旋转,上层8km以上是强气旋旋转。这对右移雷暴云发展中有优势引导作用,导致强雷暴云上层偏向分离发展,分裂发生在强雹暴云有强下沉气流阶段。分裂后,左、右移单体各自维持发展,并产生降雹。整个雷暴发展演变过程维持长生命期,回波特征有四个不同阶段。  相似文献   

9.
2019年8月16日渤海北部沿岸出现了一次冷涡背景下的EF1级龙卷。利用营口S波段双偏振多普勒天气雷达探测资料、5 min间隔的地面自动气象站观测资料、盘锦风廓线雷达探测资料及ERA5再分析资料,研究了该龙卷风暴产生的环境条件、龙卷风暴结构特征及龙卷形成的可能物理过程。结果表明:此次龙卷过程发生在500 hPa冷涡主体控制下,低空位于“利奇马”台风残涡西侧水汽输送带内,环境条件表现为弱的风垂直切变和强低层热力不稳定。营口双偏振雷达位于距龙卷发生地15 km处,探测到产生龙卷的微型超级单体钩状回波、下沉反射率核心(DRC)、弱回波洞(WEH)、龙卷残片特征(TDS)等结构。处于消亡阶段雷暴的阵风锋出流向西传播,而营口附近海风锋缓慢东移,两条边界层辐合线相遇加强,在水平切变不稳定的作用下,辐合线上有γ中尺度涡旋形成。辐合线相遇造成的辐合抬升、低层强热力不稳定导致的环境正浮力以及中层中气旋扰动低压共同作用产生强上升气流,γ中尺度涡旋与上升气流叠置,强拉伸作用增强了垂直涡度,可能是低层微尺度气旋形成的关键机制。微尺度气旋直径收缩至最小伴随旋转速度达到最大时刻,对应龙卷生成,中层中气旋与微尺度气旋分离导致龙卷消亡。   相似文献   

10.
胡鹏  焦洋  高帆 《山东气象》2019,39(2):134-142
利用济南、滨州和潍坊多普勒天气雷达及常规观测资料,对2016年6月14日下午到晚间发生在鲁中地区的超级单体回波演变和结构特征进行了分析。结果表明,该超级单体风暴产生在较大的对流有效位能和有利的风垂直切变条件下。其演变分为经典超级单体和强降水超级单体两个阶段。经典超级单体由普通单体迅速演变而来,其特征十分明显。强降水超级单体由经典超级单体风暴与其后侧下沉气流触发的普通单体风暴合并形成。合并过程造成风暴旋转强度增强,并产生类似龙卷的小尺度涡旋,导致了地面大风和大冰雹的出现。  相似文献   

11.
本文使用二维变分风场反演方法对浙江台州2003年4月12日一次超级单体风暴的多普勒天气雷达探测资料进行低层风场反演研究。二维变分方法以均匀风场反演结果作为初猜场,在目标泛函中加入散度和涡度约束作为正则项来降低不适定性的影响。反演得到的低层水平风场比较好的符合超级单体风暴的组织化的气流结构和强的风切变,通过对散度场垂直积分获得垂直速度,上升气流主要集中在强回波区域,下沉气流一个位于风暴前进的左侧的弱回波区,一个位于钩状回波的内侧。  相似文献   

12.
甘肃河西走廊两次强对流天气对比分析   总被引:1,自引:0,他引:1  
使用地面高空观测资料、NCEP 1°×1°6小时再分析数据和张掖CINRAD/CC雷达观测数据,对2006年7月7日、8月10日发生在甘肃河西走廊中部的两次强对流天气的环流形势、大气稳定度、相对风暴螺旋度(SRH)、天气雷达回波特征进行了对比分析.分析结果表明:产生这两次强对流天气环流形势不同.7月7日飑线对流系统产生于北部沙漠戈壁由北向南移动,右移飑线前部结构为气旋式旋转;8月10日对流系统产生于青藏高原由南向北移动,来自高原上的暖湿气流水汽充足,不稳定层比7月7日深厚,产生冰雹的左移超级单体结构为反气旋式旋转.7月7日右移飑线相对风暴螺旋度降雹前为正值,降雹开始后转为负值;8月10日左移反气旋超级单体相对风暴螺旋度在发展期为负值,降雹开始后跃增到60m2·s-2以上.  相似文献   

13.
利用Micaps高空、地面实况资料以及雷达基数据产品资料,分析2004—2009年湖北宜昌境内出现的10例强对流天气过程中的超级单体风暴生成的环境条件和回波结构。结果表明:产生冰雹的湿层相对浅薄,产生强降水的湿层较深厚。使用雷暴发生前地面温度和露点进行订正后的CAPE值可判断午后是否有冰雹发生:若订正后CAPE值有较大幅度增长,其值超过1000J.kg-1以上,则出现冰雹的可能性较大;反之则小。0—6km中等到强的垂直风切变有利超级单体风暴生成和发展,垂直风切变越大,越有利出现极端大风。若超级单体风暴高度的特征值和特征底有迅速下降迹象,则未来0.5h内很可能出现8级以上大风。超级单体风暴中正负速度对的切变值越大,风力越大,风灾越明显。超级单体风暴反射率因子的低层或表现为钩状、或向着入流方向突起、或密实块状等回波特征,中高层有强度达55dBz的强回波。超级单体风暴中,中气旋大多从逆风区或切变区中发展而来,且其在垂直气流结构上表现为低层气旋式辐合,中层辐合逐渐增强,为气旋式旋转,有时出现气旋式旋转与反气旋式旋转共存的双涡结构,至高层,则转为反气旋,表现为辐散。VIL密度(DVIL)对大冰雹有一定的指示意义,当DVIL≥3.5g.m-3时,出现直径超过2cm的大冰雹的可能性非常大。  相似文献   

14.
热带一次致灾龙卷形成物理过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王秀明  俞小鼎 《气象学报》2019,77(3):387-404
2016年6月5日海南出现了一个弱风垂直切变背景下的EF2级致灾龙卷。利用海口多普勒天气雷达观测资料、10 min间隔的地面自动气象站观测资料以及风廓线资料,研究了该龙卷风暴的结构、龙卷风暴与龙卷形成的可能物理过程。初始风暴在文昌附近向西传播,而同时海口风暴亦由海风锋触发并向东移动,两风暴下沉气流导致的出流相遇在海风锋辐合线上,触发了龙卷母云体。龙卷初始涡旋在低层两风暴出流相遇的切变辐合线上形成,当初始涡旋与其上方深厚且强烈的上升气流叠置时,拉伸作用加强了垂直涡度,使得龙卷形成。深厚的强上升气流有3个来源:对流风暴的出流边界相遇形成的辐合抬升,环境正浮力造成的对流单体内强上升气流,还可能与中高层强中气旋强迫的扰动低压有关。龙卷形成过程中,中高层强中气旋位于6—9 km高空并向上发展,龙卷初始涡旋先于龙卷母云体出现且比一般微气旋尺度大,伸展至更高的高度,属于非典型中气旋龙卷(或非典型超级单体龙卷)。此次热带强龙卷出现在弱的大尺度系统强迫的天气背景下,水平风垂直切变弱,海风锋、出流边界等边界层β中尺度辐合线边界在龙卷形成过程中可能起决定性作用。   相似文献   

15.
王芬  段荣  王洪宇  杨玲 《贵州气象》2012,36(5):30-33
2011年5月1日黔西南部分地区遭受了不同程度的灾害性天气,通过兴义多普勒天气雷达观测表明是超级单体风暴所致。利用兴义多普勒天气雷达探测资料及自动站观测资料对这次典型超级单体的基本产品及导出产品进行了分析。结果表明:风暴表现为单体自身发展型,基本属于右移风暴,风暴从发展到消亡的各个阶段其强度、最大强中心高度、垂直累积液态水含量、顶高、中气旋等产品均有不同的演变特征,风暴成熟阶段表现为典型的超级单体特征,有界弱回波区(BW-ER)及弱回波区(WER)明显,回波强中心高度及顶高上升明显,垂直流场表现为低层气旋性辐合,高层气流辐散。  相似文献   

16.
利用常规观测资料、ERA5再分析资料、多普勒天气雷达和双线偏振雷达以及自动站分钟级数据,通过诊断分析和风场反演,对2021年4月30日17—19时淮安地区发生的极端风雹天气的两个超级单体结构特征、维持机制和极端大风进行原因分析。结果表明:在500~700 hPa偏北急流背景下,地面强辐合中心和辐合区促使对流单体增强为超级单体风暴。淮安基准站的极端大风由超级单体A产生的下击暴流事件引发,表现为明显的风暴质心高度、最强回波高度和中气旋底高的下降,近地面层辐散风场等特征。产生强降雹的超级单体B最大反射率因子高度、风暴质心高度以及中气旋最强切变高度均达到湿球温度-20℃层高度以上。极端大风产生的原因包括强冰雹和大降水粒子下落过程中的重力拖曳和融化蒸发冷却,以及负浮力和低层强中气旋产生的垂直扰动气压梯度力。  相似文献   

17.
王俊  盛日锋  陈西利 《高原气象》2011,30(4):1078-1086
利用济南和滨州两部新一代多普勒雷达反演的三维风场,分析了发展成熟和减弱阶段的弓状回波、强对流风暴的三维风场结构,以及两者合并过程的风场变化特征。结果表明:(1)弓状回波的头部和尾部分别对应气旋性和反气旋性环流,气旋性环流较强。在逗点云系阶段,回波强度、主上升气流,以及气旋和反气旋性环流开始减弱。(2)强对流风暴靠近处于...  相似文献   

18.
综合利用多普勒雷达、地面自动气象站以及风廓线等观测资料和ERA5再分析资料,对2019年7月3日发生于辽宁开原的超级单体风暴伴随EF4级强龙卷环境条件、多普勒雷达回波特征和形成机理进行详细分析。结果表明:本次过程发生于低层暖湿高层冷干强的热力不稳定环境条件下,在地面干线汇合流场形成地面辐合线附近触发湿对流并发展为伴有龙卷的超级单体风暴。龙卷发生于低层钩状回波附近,多普勒雷达上呈现经典超级单体风暴雷达回波特征,低层强的垂直风切变将水平涡度转化为对流风暴中垂直涡度,强上升运动使得顺流涡度倾斜拉伸,从而龙卷发生前17 min在多普勒雷达2.4°仰角首先出现中气旋结构,随后风暴向南移动过程中,风暴的后侧下沉气流(RFD)将中低层的涡度“压低”致使龙卷接地,因此龙卷发生后1 min在0.5°仰角也出现强中气旋并有类龙卷涡旋特征(TVS),中气旋最强时的旋转速度达到28 m·s^(-1)(强中气旋标准),因此本次龙卷符合“自上而下”I型龙卷特征。由于环境干燥空气夹卷造成水滴强烈蒸发和冷却,使得地面出现了1 h降温达10℃的强冷池,过强的冷池可能在促使龙卷消亡过程中起到关键作用,致使龙卷持续了约30 min后消亡。  相似文献   

19.
2020年3月21日和5月4日在低层暖平流强迫背景下湖南怀化出现两次罕见的6 cm大冰雹。基于常规气象资料和多普勒天气雷达资料,对这两次大冰雹过程的超级单体风暴的强度结构、动力场结构进行分析。结果表明:(1)两次过程均发生在低层暖平流强迫背景下,中等强度对流有效位能、大的深层垂直风切变和高的能量螺旋度,有利于风暴组织性发展与维持,地面辐合线是主要触发因子。(2) 6 cm冰雹均发生在超级单体风暴强烈发展初期,由无中气旋特征的“类超级单体”造成,出现钩状回波、旁瓣回波以及三体散射和回波悬垂等特征。(3)风暴强烈发展阶段垂直动力场均表现出低层辐合、中层气旋性旋转和反气旋旋转并存的双涡管式旋转、高层辐散特征。(4)大冰雹降落前风暴最大反射率因子和单体垂直累积液态水含量均达到67 dBz和69 kg·m-2。强中心高度和最强切变高度的下降均反映出冰雹的降落。  相似文献   

20.
利用白山多普勒天气雷达、常规观测和地面加密观测资料,对2012年7月2日发生在吉林省南部的一次左移超级单体风暴进行了研究。结果发现,此次天气过程发生在深厚东北冷涡的东南象限、超强高空急流核附近的北侧,且低空风垂直切变不强、对流有效位能不大;低空有较强的暖平流,并存在一个西南—东北走向的风切变区;低空辐合、高空辐散、位于露点锋附近以及高空急流核的存在为有利于的对流发展的重要因素。在风暴发生发展过程中,始终有一个中-β尺度反气旋环流(尺度为120 km)相伴随,其旋转半径由高到低逐渐增加并在东南偏南方向被拉伸为椭圆型结构,风暴发生在该环流的西北象限的西南偏南气流之中,并具有钩状回波、弱回波区、反中气旋等超级单体所具有的特征。反中气旋出现在对流风暴发展的旺盛期,旋转半径从低层到高层逐渐增加。在风暴经过地区出现了冰雹、强降温、瞬时大风等天气现象和气象灾害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号