首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
2004年4月29日常德超级单体研究   总被引:10,自引:0,他引:10  
利用常德和长沙多普勒天气雷达资料和常规资料,对2004年4月29日发生在湖南安乡且产生了10 cm直径降雹和广泛8级大风的超级单体风暴进行了详细分析.该超级单体风暴发生在西南高空急流和西南南低空急流的交汇区域,加强的热力不稳定趋势和较大的垂直风切变条件非常有利于超级单体的产生.超级单体风暴呈现出典型的钩状回波,钩状回波位于该超级单体风暴移动方向的右后侧,从低层一直扩展到将近6 km高度;同时出现了指示存在大冰雹的三体散射回波.此次超级单体风暴成熟阶段中气旋的最大旋转速度为24 m·s-1,属于强中气旋,相应的垂直涡度为1.6×10-2 s-1.反射率因子的垂直剖面显示该超级单体风暴具有一个宽大的有界弱回波区(穹窿),其水平尺度超过10 km,垂直扩展超过4 km.在有界弱回波区之上,是一个强度超过70 dBZ的反射率因子核区,其中心高度为9 km,展现出典型的强烈超级单体雹暴结构.超级单体风暴在演变过程中经历了3次分裂过程.  相似文献   

2.
1804号台风“艾云尼”龙卷分析   总被引:13,自引:5,他引:8       下载免费PDF全文
2018年6月8日,在1804号台风“艾云尼”螺旋雨带中发生了两次陆龙卷天气,分别袭击了广州市南沙区横沥镇和佛山市南海区大沥镇。利用广州CINRAD/SA多普勒天气雷达、佛山CINRAD/XD多普勒天气雷达、5 min间隔的地面自动气象站和MICAPS等资料,研究了两次陆龙卷的天气背景、环境参数和龙卷风暴中尺度结构特征。结果表明:广州南沙龙卷为台风环流外围龙卷,位于台风中心的东北象限,强度为EF3级;佛山南海龙卷为台风环流内部龙卷,位于台风中心的东侧,强度为EF1级。龙卷均发生在中低空强东南急流在珠江口附近上下叠加和高层辐散的有利大尺度环流背景下。环境条件表现为较强的低层风垂直切变和较大的风暴相对螺旋度(SRH)、较小的对流有效位能(CAPE)和对流抑制能量(CIN)、极低的抬升凝结高度(LCL);地面存在中尺度辐合线和小尺度涡旋。广州S波段雷达探测到两次龙卷母风暴的低层钩状回波和入流缺口回波特征及低层中等强度中气旋,龙卷出现在钩状回波顶端、中气旋中心附近。佛山X波段双偏振雷达清晰地探测到佛山南海区大沥龙卷的微型超级单体和龙卷碎片特征(TDS)。   相似文献   

3.
利用常规观测、地面自动气象站、多普勒天气雷达、现场灾调及互联网视频等资料,对2018年6月8日发生在广东省佛山市南海区大沥镇的1804号“艾云尼”台风龙卷天气过程进行分析。结果表明:龙卷发生在台风“艾云尼”登陆后前进方向的右后侧,强度为EF1级。高层辐散抽吸、中低空强劲的东南风急流叠加和地面中尺度辐合线的抬升触发作用是其有利的环流背景。对流参数表现为弱的对流有效位能和对流抑制能量、强低层风垂直切变、低抬升凝结高度和大的风暴相对螺旋度。产生龙卷的风暴为低质心微超级单体风暴,龙卷出现在钩状回波的弱回波区内。速度图上中气旋提前龙卷约30 min,临近龙卷发生时中气旋旋转速度增至最强,尺度缩小,底高降至最低,对龙卷预警有一定指示作用。  相似文献   

4.
利用常规观测、自动气象站、多普勒雷达等资料分析珠江三角洲台风龙卷的活动特征及其产生的环境条件。结果表明:台风龙卷发生在6—10月,时间多为10—20时,出现在台风登陆后1.3~21.3 h的时段内;多数龙卷位于台风中心的东北象限,台风中心在广东湛江一广西东南部或北部湾附近时是珠江三角洲龙卷发生的高风险期。高层辐散、低层辐合及中低空强东南急流在珠江口附近叠加是龙卷产生的有利环流背景。强或弱龙卷环境条件的共同特征为低抬升凝结高度、强深层和低层垂直风切变及较大风暴相对螺旋度(SRH),主要差异是强龙卷的深层和低层垂直风切变与SRH更大;相似台风路径下,有/无龙卷环境条件的明显差异在于0~1 km低层垂直风切变和SRH,两值越大出现超级单体或中气旋的可能性越大,龙卷发生概率也就越高。台风龙卷风暴母体属于低质心的微型超级单体风暴;低层有强或中等强度中气旋,有时强中气旋中心伴有龙卷涡旋特征(TVS);龙卷出现在钩状回波顶端或TVS附近。与西风带超级单体龙卷相比,台风龙卷中气旋的尺度更小、垂直伸展高度更低。  相似文献   

5.
利用地面气象观测、多普勒天气雷达、风廓线雷达及现场灾调等资料,对2018年9月17日上午发生在佛山的"山竹"台风(1822)外围强龙卷天气过程进行分析。结果表明:龙卷发生在台风登陆后前进方向右前侧的东北象限,强度为EF2级。低层急流汇合与高层辐散相互配合提供了有利的环流背景,环境场表现为中等偏弱的对流有效位能、弱的对流抑制能量、低的抬升凝结高度、大的风暴相对螺旋度和0—1 km强垂直风切变等特征。地面气象要素受龙卷影响表现出明显的信号,龙卷过境前后单站气压降低/升高明显,风向出现明显气旋式旋转。产生龙卷的风暴为低质心微超级单体,龙卷出现在雷达钩状回波的弱回波区附近,雷达低仰角速度图上出现强中气旋和龙卷涡旋特征,中气旋尺度小、伸展高度低,且在龙卷发生前其最强切变突然增强。当环境条件有利时,在台风龙卷的高发区,当雷达低仰角速度图上出现中等强度以上中气旋,且底高在1 km以下时,可以考虑发布龙卷预警。  相似文献   

6.
山东半岛两次海风锋引起的强对流天气对比   总被引:3,自引:2,他引:1       下载免费PDF全文
利用常规地面和高空观测资料、烟台和青岛多普勒天气雷达资料、加密自动气象站等资料分析2014年7月14日(“7·14”)和2009年6月29日(“6·29”)山东半岛两次海风锋引起的强对流天气。结果表明:“7·14”强对流天气发生于冷涡后部前倾槽的环流形势下, 明显的静力不稳定层结、中等大小的对流有效位能及垂直风切变相对偏弱, 是此次对流风暴持续时间短且降雹范围较小的原因; “6·29”过程是东北冷涡影响下的强对流天气。海风锋、阵风锋、地面辐合线是两次过程的触发机制, 两次过程都出现了高悬的强回波、弱回波区、回波悬垂、钩状回波、中气旋等超级单体回波特征; 大冰雹形成期表现为中气旋垂直伸展较大和旋转较强, 两次过程的超级单体风暴均由海风锋触发的靠近山脉的风暴发展加强而成, 即地形与海风锋结合导致的更强抬升在加强对流风暴并演化为超级单体风暴中起了关键作用。但“6·29”强对流天气过程出现了强中气旋, “7·14”强对流天气过程出现了弱中气旋, 因此, 前者对流范围更大、强度更强。  相似文献   

7.
利用常规观测资料、济南多普勒雷达资料、FY-2G资料和加密自动站等资料分析了2016年6月14日一次在华北冷涡背景下发生的超级单体风暴生成及分裂过程,对超级单体分裂过程的雷达回波特征和环境条件进行了详细的分析。结果表明,超级单体风暴发生在地面中尺度辐合线附近,中层短波槽前,高空有中空急流的环境下,触发的对流云团向偏东方向移动中,在不稳定层结和较强的垂直风切变作用下,对流风暴发生分裂且右移性对流风暴发展加强。风暴分裂后环境风左侧的风暴单体并没有受到明显抑制,中尺度辐合线附近的露点锋生抵消了反气旋性风暴的受抑制程度,使反气旋性风暴能有所加强并持续更长的时间。环境风右侧的风暴单体发展加强,且持续时间长达2 h。风暴分裂是在单体发展的初期开始,分裂先从中高层开始,然后向下延伸,分裂后相对于环境风方向,左侧单体为反气旋性左移风暴,右侧为气旋性右移风暴。气旋性右移风暴强烈发展为具有低层的入流缺口、中高层的弱回波区及风暴顶的强辐散,与经典超级单体风暴回波特征类似。分裂后右移风暴伴有深厚持久的中气旋,其起源于中层4~5 km,然后向上和向下发展,最强旋转出现在高层,旋转速度达29 m/s,这与典型超级单体内中气旋都是中层旋转最强有所不同。  相似文献   

8.
一次致雹超级单体结构特征分析   总被引:2,自引:2,他引:0       下载免费PDF全文
利用常规观测资料、多普勒雷达资料,对发生在徐州地区的一次冰雹天气的环流背景、降雹超级单体结构特征进行了分析。结果表明,此次强对流发生在前倾槽背景下,500 hPa高空槽东移过程中其后部冷空气南下,叠置在低层槽前西南暖湿急流之上,促进了大气层结不稳定发展。产生冰雹的对流风暴具有明显的超级单体结构特征,风暴中伴有旋转强烈的中气旋,持续时间约30 min,且最大切变高度都在0℃层高度以上。进一步分析发现,中气旋旋转速度中心和切变值中心均位于中高层,风暴中的旋转趋于向上发展,旋转强度在中高层有明显的跃升,且冰雹出现前后,位于风暴内中高层的旋转经历了尺度减小、旋转加剧的变化,风暴中的旋转导致风暴呈现出有界弱回波区和强回波悬垂结构特征。此外,尽管此次冰雹过程的垂直累积液态水含量(Vertically Integrated Liquid,下文简称VIL)值较小,但可以看到VIL值在冰雹发生前后有明显的跃增现象,这一现象对判断小冰雹的发生有一定的指示意义。  相似文献   

9.
利用多普勒雷达、NECP再分析、常规观测和自动站降水资料,对2015年6月28—29日西南涡影响下发生在汉中盆地的暴雨天气进行分析,探究了西南涡的中小尺度系统特征。本次暴雨过程是在850hPa西南涡影响下,伴随700hPa低空急流和对流层顶的高空辐散共同作用下产生的。强降水区集中在西南涡东北部的佛坪和镇巴两站。雷达强度场上,在西南涡的东北部有超级单体结构发展,对应两个强降水中心,超级单体持续1.5~2h左右,最强回波强度达58dBz。速度场上,超级单体伴随有深厚中气旋,两次暴雨过程中,中气旋分别位于超级单体的西南侧和中心,并在镇巴有带状逆风区存在。分析表明,由西南涡所诱发的中尺度对流复合体(MCC)中包含的超级单体是造成佛坪70.9mm/h和镇巴32.1mm/h强暴雨的直接原因,汉中盆地暴雨的发展与减弱直接受到超级单体风暴强弱的控制。  相似文献   

10.
利用高空探测、地面加密区域自动气象站、NCEP1°×1°再分析、FY-4A红外云图、多普勒天气雷达和风廓线雷达等资料,分析了2020年8月11~13日四川盆地一次区域性暴雨过程的降水时空分布、环流背景和风暴系统演变等特征,并重点探讨了低空急流在此次过程中的作用。结果表明:(1)此次过程发生在“东高西低”的环流背景下,主要影响因子为500 hPa低槽、副高和西南涡。(2)低空急流的出现有利于正涡度柱的形成和上升气流支的建立,盆地西北部地形作用可以使上升辐合增强。(3)低空急流为暴雨区带来水汽和不稳定能量。(4)急流对降水风暴系统的影响主要分两个阶段。第一阶段以东南急流为主导,一方面引导对流系统向西北方向移动和增强,一方面在四川盆地西北部山前激发强对流回波带。第二阶段以西南涡西北象限的东北急流为主导,一方面在急流出口左侧形成强动力辐合,一方面将低涡南部的暖湿空气向MCS输送。整个影响过程中,急流主体下边界由3000 m下降到600 m,主导风向由东南风转为西北风。(5)低空急流增强时,MCS维持在代表站上游地区,呈准静止后向传播特征;低空急流减弱时,MCS的准静止状态被打破,对流系统迅速移向代表站,带来短时强降水。(6)龙泉山脉使近地层东北急流气旋性弯曲增大,水平辐合增强。当MCS经过时,龙泉山为地形辐合带,激发新生单体在山麓西侧形成并沿山脉向东北方向移动。   相似文献   

11.
利用海口多普勒雷达、海南省区域加密自动站和常规资料对2016年4月11日凌晨发生在海南岛北部近海和陆地的大范围雷暴大风过程进行天气学分析。结果表明:(1)这次雷暴大风过程发生在500 hPa槽前、低空急流左前侧、低层切变线南侧、高空急流分流区下方和地面静止锋南侧的有利于对流发展的较大范围上升气流区域内;(2)对流风暴移动路径上的大气环境具有中等程度的条件不稳定、对流有效位能CAPE以及上干冷下暖湿的温-湿廓线垂直结构、强的深层垂直风切变,对流风暴形成后最终组织发展产生雷暴大风、大冰雹和短时强降水的多单体带状回波和弓形回波;(3)在多单体带状回波中镶嵌的风暴A和B各自发展成为具有中层径向辐合特征的超级单体,风暴B和C合并形成弓形回波,其中风暴C的中气旋加强成为弓形回波北部的气旋式中尺度涡旋;(4)阵风锋对对流风暴的正反馈作用、对流风暴前侧强劲的暖湿入流与风暴后侧径向风速相当的冷池出流,长时间倾斜依存的自组织结构及其与强的低层环境风垂直切变的相互作用,是多单体风暴和弓形回波长时间维持和加强的主要原因;(5)地面原来存在的β中尺度辐合切变线,对流风暴主体回波沿着海南岛北部近海东移等因素,有利于多单体带状回波和弓形回波的长时间维持。   相似文献   

12.
一次弓形回波中超级单体发展造成的大风、冰雹天气分析   总被引:1,自引:1,他引:0  
利用Micaps常规资料、自动站资料及灾情调查资料、雷达回波资料等,综合分析了2011年4月15日出现在安顺市的大风、冰雹天气,此次天气直接触发系统是地面辐合线。通过对加密自动站的数据分析表明此次过程是一次典型的飑线过程。对多普勒雷达资料的分析进一步表明是一次"后续线"发展型飑线影响,其中有超级单体风暴产生,弓形回波前最凸起部位前侧"v"型缺口处的强辐合入流造成镇宁站的大风,弓形回波特征减弱时后部弱回波通道中的下击暴流造成西秀区岩腊乡和紫云县猫营镇大风灾害。这两次大风灾害发生于强对流系统不同的发展阶段,产生的机制有所不同。  相似文献   

13.
广东两次台风龙卷的环境背景和雷达回波对比   总被引:1,自引:1,他引:0       下载免费PDF全文
利用常规气象观测、广州多普勒天气雷达及NCEP/NCAR再分析等资料对比广东省佛山市2015年10月4日EF3级和2006年8月4日EF2级台风外围强龙卷过程。结果表明:两次强龙卷都发生在登陆台风的东北象限,低层辐合、高层辐散及中低空强劲东南急流在珠江三角洲叠加是其产生的相似环境背景。环境参数均表现为较小的对流有效位能、低的对流抑制与抬升凝结高度、强的垂直风切变和大的风暴相对螺旋度。两个龙卷母体均为微型超级单体,前者雷达回波强度更强,钩状回波特征更明显;都存在强中气旋和龙卷涡旋特征(TVS),中气旋都在中低层形成后,向更低层发展最终导致龙卷。TVS比龙卷触地提前1个体扫出现,或与龙卷触地同时发生,中气旋和TVS的底高和顶高均很低。但两次龙卷触地前后,前者中气旋和TVS的底高和顶高出现突降现象,而后者中气旋和TVS的底高和顶高一直维持较低高度。龙卷触地前后,两者风暴单体的最强切变均出现剧增现象,但前者TVS的最强切变更强,比后者大1倍以上。  相似文献   

14.
一次超级单体分裂过程的雷达回波特征分析   总被引:2,自引:0,他引:2  
2007年7月9日16—20时(北京时)在河北南部非常罕见地观测到了多个超级单体风暴在相近地点连续生成及分裂的过程。利用石家庄新乐SA型多普勒天气雷达资料、地面自动站及常规天气资料,对超级单体分裂过程及环境条件做了分析。表明这次的多个超级单体风暴是在强的对流有效位能和垂直风切变的环境条件下发生的。由于垂直风切变矢量方向随高度逆时针旋转,因此,分裂后左移的反气旋风暴得到加强,发展成为具有深厚中反气旋的左移超级单体风暴,而右移的气旋性风暴受到抑制,与理论研究结果一致。但也有不同之处,沿着地面高湿区内热力边界偏暖一侧移动的气旋性风暴没有受到明显抑制,有利的地面环境条件抵消了气旋性风暴受抑制的程度,使气旋性风暴能够持续更长的时间。该强烈发展的带有明显中反气旋的超级单体风暴具有低层钩状回波和入流缺口、中高层有界弱回波区及位于有界弱回波区之上的高层具有反射率因子核心和强烈风暴顶辐散,与经典的气旋式右移超级单体风暴的回波特征非常类似,除了是反气旋涡旋外,其回波特征与气旋式超级单体近似成镜像。风暴分裂是在单体形成不久的发展初期开始的。分裂先从中高层开始,然后迅速向下延伸。分裂后相对于0—6 km风切变矢量,左侧的单体为反气旋左移风暴,右侧的为气旋性右移风暴。  相似文献   

15.
高晓梅  马守强  王世杰  彭潇  魏涛 《气象科技》2018,46(6):1188-1200
利用常规地面和高空观测资料、加密自动站资料和多普勒雷达资料,对2016年6月山东两次强对流天气的雷达特征、环境条件等进行了对比分析,结果表明:6月14日强对流天气主要是横槽转竖引导冷空气南下引起,6月30日强对流天气发生在高空槽前、山东高低层受一致西南气流影响的环流形势下,地面辐合线是两次过程的触发机制。6月14日垂直风切变和风暴承载层平均风均比30日大很多,致使14日的超级单体风暴持续时间更长、强度更强。风暴相对螺旋度的大小对强对流天气强弱程度有指示意义。两次过程都在地面辐合线附近生成,都具有中气旋、高悬的强回波、有界弱回波区、回波悬垂、风暴顶辐散等雷达特征,不同的是14日具有倒V形缺口、中层径向辐合、冰雹散射和钩状回波等特征,30日具有窄带回波、径向速度大值区等特征。两次过程都出现了弱旋转对应地面都带来小冰雹天气,这在预报业务中值得注意。两次降雹与风暴单体高度及强度、垂直累积液态水含量及密度、中气旋厚度、最大切变和持续时间密切相关。  相似文献   

16.
两类不同风灾个例超级单体特征对比分析   总被引:1,自引:1,他引:0       下载免费PDF全文
杨波  孙继松  刘鑫华 《气象学报》2019,77(3):427-441
采用分钟级加密自动气象站观测资料,盐城、淮安和岳阳、荆州雷达探测数据,以及欧洲中期天气预报中心(ECMWF)高分辨率的ERA-Interim全球再分析数据,对比分析了2016年6月23日江苏阜宁龙卷灾害和2015年6月1日湖北监利下击暴流大风灾害的环境特征与超级单体的结构特征。结果表明:(1)两次强对流大风灾害发生在相似的低空环流背景下:风灾发生在低空急流出口区左侧的暖区内、850 hPa低涡中心东侧6—7个经距的位置;环境大气的对流有效位能大于2000 J/kg。但是风灾的类型不同,江苏阜宁大风灾害主要由超级单体龙卷造成,监利“东方之星”沉船事故主要是超级单体触发的下击暴流造成。短时强降水中心与风灾中心的相对位置不同:阜宁龙卷移动方向的左侧伴随着最强短时降水;湖北监利沉船事件发生期间,风灾中心与短时强降水中心基本重合。鉴于不同性质的对流大风位置与超级单体母体的中心位置对应关系上存在差异,通过比较地面观测的瞬时大风与瞬时强降水中心的相对位置将有助于区分强对流大风的性质。(2)环境风垂直切变强度对对流风暴结构、发展、维持有重要影响:阜宁龙卷发生时,其上空0—6 km风垂直切变达4×10-3 s-1,超级单体有明显的向前倾斜结构,形成有界弱回波区;而监利强对流沉船位置0—6 km风垂直切变只有2.3×10-3 s-1左右,风暴单体中的上升气流近乎于垂直。阜宁超级单体中气旋,首先出现在0—1.5 km风垂直切变和0—3 km风暴相对螺旋度带状大值区,在向抬升凝结高度更低的环境移动过程中,其底部不断下降,形成龙卷;而在监利沉船区,中低层风切变和风暴相对螺旋度相对要弱得多,对应风暴单体中的中气旋强度、持续性较弱,中气旋底部高度维持在1.6 km左右。(3)环境湿度垂直结构特征不同可能是风暴单体形成不同类型灾害大风的重要环境因子。监利下击暴流造成的风灾发生时,在地面气温迅速下降过程中,气压变化呈现快速跳升又快速下降的“尖锥”形,气压峰值比降水峰值提前4 min出现。它与对流层中高层环境大气中较为深厚的干空气卷入对流风暴中造成水物质强烈蒸发、冷却过程有关。而阜宁风灾过程中,环境大气中层仅存在非常浅薄的干层,加之低层较为深厚的饱和大气环境,对应的地面冷池效应相对较弱。   相似文献   

17.
利用地面加密站、雷达、微波辐射计和欧洲中心(ERA-interim)逐6 h等多种观测资料,对2019年5月17日北京通州区出现局地极端强降水、雷暴大风和大冰雹天气过程进行分析。结果表明:强降水超级单体是造成本次强对流天气的直接系统,雷达回波可识别出典型特征。午后在地面和超低空北京南部出现小的热低压系统,使得东南风显著加强,一方面提供了充沛的水汽,形成上干下湿的不稳定层结。另一方面,其与高空西风急流相互作用,使得垂直风切变增强,并产生垂直环流。低空逆温层长时间存在,能量不断积累,使午后雷暴爆发性增强成为可能。地面冷池出流与偏南风对峙,形成了假相当位温密集带。冷池长时间稳定维持,其前沿出现一条湿热边界层辐合线,锋生作用使得暖湿气流不断被抬升,对流系统加强并呈准静止状态。在有利的环境背景下,加之充沛的水汽供应和强烈的边界层辐合抬升,雷暴强烈发展形成强降水超级单体,随后分裂,右侧的风暴又发展为超级单体,再次经过通州东部,形成暴雨中心。  相似文献   

18.
江苏沿江地区一次强冰雹天气的中尺度特征分析   总被引:11,自引:2,他引:9  
徐芬  郑媛媛  肖卉  慕熙昱 《气象》2016,42(5):567-577
利用常规气象资料、卫星、多普勒天气雷达、风廓线雷达等资料,对发生在江苏沿江地区一次强冰雹天气形势背景、环境热动力条件、强冰雹发生前地区环境场变化、超级单体雷达回波中尺度特征等进行了详细分析。结果表明:(1)在东北冷涡槽后干冷气流影响下,中高层干冷、低层暖湿的不稳定层结,高低空急流以及地面辐合系统的配置为此次强对流天气的产生提供了有利热动力条件;高CAPE值、逆温层、低层适当水汽条件及较强的深层垂直风切变有利于强冰雹天气的发生。(2)利用多普勒天气雷达、风廓线仪数据反演垂直分布的物理量场(平均散度、平均垂直速度、相对风暴螺旋度、垂直风切变)能够反映本站上空环境场的快速变化情况:强对流系统移入本站前雷达站上空逐渐调整为低层辐合、中高层辐散的风场配置结构,螺旋度和垂直风切变数值逐渐增加,表明环境场有利于强对流系统的维持发展。(3)强降雹超级单体除具有三体散射现象、入流缺口等雷达回波中尺度特征外,持久深厚的中气旋存在造成了显著的有界弱回波区和高悬垂强回波区。应用双多普勒雷达风场反演技术揭示了超级单体内部环流结构:低层气旋性旋转,中层旋转加强,高层风场辐散。超级单体内部涡旋特征的出现和维持有利于支撑空中大冰雹的增长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号