首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
利用2005—2018年125个国家级台站小时降水观测数据研究云南小时降水时空分布特征。结果表明:云南年总降水量、不同持续时间降水量、极端强降水量及降水日变化空间分布差异很大。年降水量自西北向南增加,雨强自北向南增强,降水时长西部大于东部、南部略大于北部,年降水量受降水时长和雨强共同影响,降水时长影响最强,雨强影响较弱,这种特征在滇西北最突出,但滇东北的降水量与雨强相关更好。云南大部夜雨量多于昼雨量,滇东北和北部边缘夜雨特征最显著;降水日变化特征在云南北部为夜间单峰,西部边缘为清晨单峰,中部为夜间与午后峰值相当的双峰,南部也为夜间和午后双峰,但南部不同区域间主峰和次峰出现时间不同。云南南部降水贡献以短、中历时降水为主,北部则以长、超长历时降水为主。云南短时强降水发生次数的空间分布表现为自西北向东南增加;年发生站次数具有增加趋势,日变化特征为显著单峰,多在傍晚至入夜出现,且极端短时强降水更易在凌晨出现。这些小时降水时空分布特征很大程度上代表了低纬高原地区的降水特征。由于低值天气系统多影响低纬高原中北部,热带天气系统多影响南部,且低纬高原地形复杂,局地热力条件差异明显,这些因素造成该区域小时降水时空分布特征差异显著。  相似文献   

2.
为了挖掘降水的内在非线性动力学机制,基于1960—2017年4—9月的中国日降水数据,利用百分位阈值法确定不同强度的降水事件,定义相邻同强度降水事件之间的间隔时间为“静默时间”,描述同阈值降水事件再次发生的历时长短。“平均静默时间”可以表征不同强度降水事件的群发性特征,即某一时段内,平均静默时间越短(长),同类型降水事件再次发生的历时越短(长),其群发性程度越强(弱)。分析不同强度降水事件的平均静默时间在中国东部地区的空间分布和时间演变特征表明: 1960—2017年,一般强度降水事件在长江中游地区较其余地区群发性强,而东北南部地区则较弱; 极端降水事件在中国东部北方地区群发性较强,而在南方地区则偏弱。就气候态演化过程而言,一般强度降水事件的群发性在长江以南地区有所增强,在东北南部地区则呈减弱趋势;极端降水事件的群发性特征在中国东部北方地区不断减弱,但在南方地区持续增强。各站点降水事件静默时间的概率密度函数均呈幂律分布,且时、空上呈无标度特征,表明日降水系统为现实世界中的自组织临界系统,为时间序列分析角度理解降水事件内在非线性动力学机制提供了新的视角。   相似文献   

3.
选取1977—2016年国家气象信息中心提供的贵州82站逐日降水资料,利用合成分析、显著性检验、小波分析、带通滤波等方法,分析了近40 a贵州5—8月(简称主汛期,下同)降水的时空分布特征,以及典型涝年、典型旱年的低频降水特征。结果表明:贵州主汛期降水呈现明显的年代际变化特征,其多年平均总降水量呈现南多北少的趋势,总降水量大值区主要集中在贵州的西南部地区(六盘水市、安顺市中西部和黔西南州西部)。典型涝年和典型旱年的平均主汛期总降水量以西南部最为明显,且各自主汛期降水的低频振荡周期差别不明显;10~20 d是贵州主汛期降水普遍存在的显著低频周期,典型涝年存在30~40 d低频周期,典型旱年存在较弱的35~45 d低频周期,低频降水主要发生在6月和7月。  相似文献   

4.
GRAPES_GFS模式全球降水预报的主要偏差特征   总被引:1,自引:0,他引:1  
刘帅  王建捷  陈起英  孙健 《气象学报》2021,79(2):255-281
利用2017年1、4、7、10月“全球降水观测(global precipitation measurement,GPM)计划”每日08时(北京时)的24 h累计降水量和逐30 min降水量观测产品,从降水量和频率等角度,对同期GRAPES全球模式(GRAPES_GFS)第1(D1)、3(D3)、5天(D5)的全球降水预报性能和偏差特征进行细致评估与分析,且对低纬度暖池和北半球中纬度风暴路径区进行了重点观察,初步探讨了降水预报偏差特征在低纬度和中纬度明显不同的可能原因。结果显示:(1)GRAPES_GFS的D1—D5预报对全球日降水(量和频率)分布描述合理,能准确再现纬向平均降水(量和频率)的典型特征—降水“双峰”极大位于南北纬20°之间,次极大位于南北纬40°—50°地区的特征,以及关键区日降水时、空演变和降水日循环逐日演变的主要趋势特征。(2)低纬度的纬向平均湿日(≥0.1 mm/d)频率预报正偏差很小,但日降水量和强降水日(>25 mm/d)频率预报的正偏差明显、偏差极大值“双峰”位置恰是相应观测极大值所在处(南北纬5°—10°);中纬度的纬向平均日降水量预报基本无偏,但明显的湿日降水频率预报正偏差(20%—30%)和强降水日频率负偏差出现在南北纬40°—60°。降水偏差正、负分布特征随季节和预报时效基本保持不变,预报均方根误差数倍于平均误差,暗示模式降水预报偏差有系统性且性能表现波动较大。(3)日循环中,模式在暖池的降水量预报正偏差缘于降水强度预报偏强,降水频率预报的弱负偏差主要与降水落区预报偏小有关;而模式在北半球风暴路径区降水频率预报的正偏差则是降水落区预报偏大和空报弱降水事件两方面因素造成。(4)模式降水(量和频率)预报偏差特征在低纬度和中纬度的明显差异与模式次网格尺度和网格尺度降水比例失调有关,改进线索指向模式对流参数化方案中深对流的启动和深对流降水量的处理以及对流参数化方案与云微物理方案的协同问题。   相似文献   

5.
利用2013-2019年暖季(4-9月)小时降水资料,分析了甘肃省强降水极值及频率的时空分布特征。结果表明:(1)甘肃省小时强降水频次呈现东高西低分布,在陇南地区东南部及陇东地区北部有2个高中心,达到29次。(2)小时强降水极值在陇中地区及以南地区高,向西北递减,陇南地区降水极值最高,超过40 mm/h。(3)小时强降水频次主要出现在7-8月,同期的雨强也最大;小时强降水频次和小时雨强均在17-24时最强,峰值为21时。(4)不同区域的降水日内变化存在明显差异,河西地区小时降水频次的峰值出现在18时,陇中和陇南地区均出现在21时,陇东地区和甘南高原分别出现在22时和19时。  相似文献   

6.
1960—2008年淮河流域极端降水演变特征   总被引:1,自引:1,他引:0  
采用地理空间统计、时间序列分析和趋势诊断等方法,研究1960—2008年淮河流域极端降水时空演变特征:流域大部分地区全年及四季的极端强降水量、降水强度、强降雨日数无明显变化趋势;≥15 d的持续无降水事件发生次数由南向北递增,平均每年2~5次,冬季最多、夏季最少;≥5 d的持续降水事件由东北向西南递增,平均每年1~8次,潢川—正阳—郑州一线的西北部秋季最多,其他地区夏季最多;40%的站点持续无降水事件有明显增多趋势,气候倾向率为0.22~0.60次/a,且大多在1970s发生气候突变;30%的站点持续降水事件有明显减少趋势,气候倾向率为-0.24~-0.70次/a,普遍无气候突变;持续无降水(降水)事件与年降水总量没有明显的联系。  相似文献   

7.
从各层次高度场环流、海温场分布型式,以及一些环流特征量等进行了分析,通过分析,寻出影响吉林省夏季气温、降水的前期信号因子,总结出预测模型图,以期在今后的预测中有所帮助。分析中发现:前一年冬季乌拉尔山地区高压的强(弱)与吉林省夏季气温高(低)有直接关系;前一年秋、冬季至当年春季西北太平洋副热带高压偏强(弱),则吉林省夏季气温高(低);当年春季暖池区海温高(低),则吉林省夏季气温高(低)。前1年春季黑潮至暖池区海温高(低),则吉林省中西部夏季降水少(多);前2年春季赤道东太平洋区海温高(低),则中西部夏季降水少(多);前2年秋季西风漂流区及黑潮区海温高(低),则东南部夏季降水多(少);冬季北太平洋涛动强(弱),吉林省夏季降水少(多)、北大西洋涛动强(弱),夏季降水多(少);东亚冬季风强度强(弱),则吉林省夏季少雨(多雨)概率较大;前1年4月。5月极涡1区强度弱(强),6月降水易多(少)。  相似文献   

8.
利用云南省2325个国家级台站和区域自动观测站逐小时降水数据,分析了2014~2018年云南雨季和干季的降水量、降水频次和降水强度的空间分布特征以及关键区域的降水日变化演变特征。结果表明:受复杂地形影响,云南不同区域降水特征差异显著,且与我国东部地区显著不同。年均降水量大体呈西南高、西北低的分布特征。对于云南西北部的怒江河谷地区,干、雨季降水均为夜间峰值,降水频次高,但强度较弱。对于云南最西部(99°E以西)的保山德宏地区,该地区累计降水量为云南最大,这一区域各台站日变化峰值均较为一致地出现在上午,在陆地地区较为少见。相邻的普洱和元江河谷位于云南南部(23°N以南),雨季两区域降水相当,但元江河谷在干季与雨季均为突出的夜间至清晨降水峰值,普洱地区雨季则是明显的午后降水峰值。云南中部地区降水量较周边地区明显偏小,该地区降水频次在雨季主要表现为清晨峰值,而在干季却是午后峰值更为突出,这也与我国东部地区降水日变化特征差异明显。   相似文献   

9.
山东夏季降水分布型及与全国雨型的关系   总被引:2,自引:0,他引:2  
利用山东省26个代表站1961—2009年夏季6—8月降水资料,采用自然函数正交分解(EOF)和相关概率等方法定义了山东夏季降水分布型,并分析了其年代际变化特征及与全国雨型的关系,结果表明:山东夏季降水存在同多(少)、东少(多)西多(少)及南多(少)北少(多)六个基本分布型;其与全国雨型有一定的联系,出现频数最高的同多型中,全国Ⅱ类雨型最多,其次为Ⅰ类雨型;出现频数次高的同少型中,全国Ⅲ类雨型最多。山东夏季雨型变化具有明显的年代际特征,同多型主要出现在上世纪60年代前期、90年代中前期及21世纪初;同少型主要分布在80年代;2000年以来,山东夏季以全省多雨为主,且主要多雨区位于鲁南、鲁中东部和半岛地区。  相似文献   

10.
近46年影响福建的台风降水的气候特征分析   总被引:17,自引:7,他引:10  
对1960~2005年46年间影响福建的台风降水进行时空分析,结果表明:影响福建的台风降水主要发生在5~11月,8月是台风降水最多的月份;自1960年以来台风降水整体呈下降趋势;在地域分布上台风降水由闽南沿海向闽西北内陆逐渐减小,最大台风降水出现在闽南和闽东北地区;台风暴雨是福建地区的极端强降水事件之一,台风暴雨频发区主要集中在沿海及闽西南地区;受福建山地地形作用山脉以东的台风暴雨发生的概率要大大高于山脉西侧地区.台风降水的异常与亚洲地区500 hPa大气环流和赤道东太平洋海温异常关系密切,它们可能主要通过大气环流的改变进而对影响中国台风北上路径起到调制作用,并最终引起福建地区台风降水的异常.  相似文献   

11.
应用贵州现有自记降水、自动降水观测资料,统计分析了贵州1954—2017年国家气象站累年最大小时雨强、年最大小时雨强的时空分布特征,1968—2017年50年年最大小时雨强变化。结果表明,贵州年最大小时雨强分布于13.6~117.4mm·h~(-1)之间,累年最大小时雨强在53.0~117.4mm·h~(-1)之间。贵州西南部、中西部、东北部,东南部都出现了小时最大雨强100mm·h~(-1)以上的区域,西南部为小时雨强最强区域。贵州强降雨3—11月均有发生,集中出现在5—8月,6月强降雨最多,贵州强降雨具有明显的夜发性特征,出现时间集中于午夜前后2h左右,前半夜多于后半夜,午间时间是出现最少时段。贵州小时雨强增大与减小趋势都不明显,在东南面、南部、西部有弱增大趋势,东北和西北面呈弱减小趋势。  相似文献   

12.
利用1994~2013年5~9月喀什市气象站逐小时降水资料,分析喀什近20a降水日变化特征。研究表明,20时至翌日06时为降水量的高值阶段,最大值出现在01时,07时至19时为降水量的低值时段,最小值出现在16时。降水频次的高值区为00时至07时,降水最不易产生的时间为17时。降水强度最高值在20时,次高值为01时,也是累积降水量较大时刻,降水强度最低值出现在15时也是累积降水量的低值区。喀什的降水主要以短时性降水(1~3h)为主,多发生在傍晚至夜间,1h降水频次最多的是量级≤1mm的降水,但1.1mm≤R1≤3.0mm量级的降水贡献率最高。小雨、中雨及大雨降水过程最易发生时段均为前半夜,下午为各量级降水过程发生最少的时段。  相似文献   

13.
山西地形复杂,汛期降水集中,短时强降水易引发地质灾害及城市内涝,是制约社会经济发展和人民安居的重要因素。本文通过分析山西省2011~2016年290个高密度自动气象站逐时降水资料,结合本地强降水预警业务规定,根据致灾风险程度将短历时强降水分为四级,全面细致分析了各级强降水的时空变化特征,对强降水的精细化预报有指示意义。结果表明:短时强降水主要受纬度和地形影响,各级强降水的累计降水量和降水小时数大值区一般沿太行山脉和吕梁山脉展布;短时强降水在每日15~18时高发,到了夜间20~23时,出现第二峰值;城区一般性强降水比乡村区域偏多偏强。  相似文献   

14.
谢漪云  王建捷 《气象学报》2021,79(5):732-749
利用2019年夏季(6—8月)西南复杂地形区地面观测站逐时和逐日降水量观测数据,从降水量和降水频率入手,对同期GRAPES-Meso 3 km业务模式短期(36 h以内)降水预报性能,特别是在不同典型地貌区—四川盆地子区、云贵高原北部子区和南部子区、青藏高原东缘山地子区的预报偏差进行细致评估与分析。结果表明:(1)GRAPES-Meso 3 km模式能合理地刻画出西南复杂地形区夏季日降水和日内尺度降水的主要特征,以及小时降水频次-强度的基本关系。(2)在各子区,模式日降水量(频率)预报表现为清晰的正偏差,正偏差在盆地子区最显著,为观测值的1.1倍(0.3倍);日降水量正偏差主要由强降水日降水量预报偏大引起,但频率正偏差在云贵高原南、北子区与其他两个子区不同,主要是中小雨日数预报偏多的贡献;强降水(中小雨)落区预报存在明显(轻微)偏大倾向,强降水预报落区偏大频率在青藏高原东缘山地子区最高,达82.8%,在云贵高原南部子区最低,为53.6%。(3)日循环上,各时次小时降水量(频率)预报整体偏大,且主要正偏差出现在观测的夜雨峰值时段,其中海拔1200 m以下区域的降水频率正偏差从夜间峰值区延续到中午,模式偏强的日降水量预报往往表现为日内偏长的降水时长或小时降水空报。(4)诊断分析显示,模式在四川盆地区突出的夏季日降水预报正偏差是模式对流层低层在云贵高原南-东南侧偏强的西南风预报与西南地区特殊地形结合的产物。   相似文献   

15.
本文利用常规观测资料、逐小时区域自动站观测资料、NCEP1°× 1°逐6小时再分析资料等对安顺2019年6月5-11日和9月5-10日的持续性暴雨天气进行分析,结果表明:(1)6月5-11日天气过程主要是由于两高之间不断有短波槽东移造成的,9月5-10日天气过程主要是由于副高稳定少动,西南涡在副高外围稳定维持较造成的;(2)垂直螺旋度垂直积分越大越有利于产生强的短时强降雨,垂直螺旋度强中心发展高度越高越有利于短时强降雨持续不断的产生;(3)水汽垂直螺旋度在这2次持续性暴雨天气过程中对短时强降雨的发生和降雨强度有很好的指示,水汽垂直螺旋度在短时强降雨出现前6小时出现增大,且中心值越大短时强降雨强度越强,在短时强降雨发生期间迅速减小;(4)6月5-11日天气过程中,质量垂直螺旋度值增大-减小得越多,出现的短时强降雨强度越强。  相似文献   

16.
利用多源气象数据资料,对2018年台风“温比亚”引发山东历史极端暴雨的环境场进行了研究。结果表明:(1)台风“温比亚”影响山东引起的前期强降水位于鲁南地区,主要为台风外围螺旋云系降水,19日白天至夜间是此次强降水主要时段,主要受台风和西风槽相互作用引起的,强降水落区主要集中于台风倒槽附近。(2)副高稳定少动、中低纬系统相互作用及低空急流的稳定维持是此次台风强降水的主要原因。(3)超低空急流相比低空急流对出现强降水更有明显的指示意义,其强度大小影响降水的强弱程度,且超低空(500 m以下)出现20 m?s-1以上的强风速对短时强降水有明显指示作用。低空急流指数对强降水出现特别是中小尺度强降水及雨强大小有一定预示作用。(4)特殊地形在此次台风暴雨中起了较大作用,地形的迎风坡效应在山地产生的强迫抬升作用及山脉阻挡引起的水汽在山前积聚等动力和热力共同作用触发湿对流是此次台风出现短时强降水的重要触发机制。(5)此次台风暴雨过程Q矢量散度负值的强弱对于未来6 h雨强大小有较好的指示意义。另外,此次台风特大暴雨与冷空气密切相关。  相似文献   

17.
杨学斌  代玉田  王宁  周成 《山东气象》2018,38(2):103-109
利用山东2006—2015年5—9月123个国家级气象观测站10 a逐小时降水量资料,统计分析了山东短时强降水的时空分布特征,结果表明:1)站次时空分布不均。鲁南易出现短时强降水,2013年最多,达到了564站次,7月最多,平均207站次,多出现在傍晚前后和凌晨。2)极值时空分布差异较大。10 a单站极值大值区分布在鲁西北、鲁南和半岛东部,2009年最多,为17站,且多夜间发生;10 a中年度极值均出现在13:00—次日02:00,8月最多,为7次。3)5、6、9月局地和小范围短时强降水天气过程所占比例较大,7—8月大范围短时强降水过程明显增加。  相似文献   

18.
With the development of urbanization, whether precipitation characteristics in Guangdong Province, China, from 1981 to 2015 have changed are investigated using rain gauge data from 76 stations. These characteristics include annual precipitation, rainfall frequency, intense rainfall(defined as hourly precipitation ≥ 20 mm), light precipitation(defined as hourly precipitation ≤ 2.5 mm), and extreme rainfall(defined as hourly rainfall exceeding the 99.9 th percentile of the hourly rainfall distribution). During these 35 years, the annual precipitation shows an increasing trend in the urban areas.While rainfall frequency and light precipitation have a decreasing trend, intense rainfall frequency shows an increasing trend. The heavy and extreme rainfall frequency both exhibit an increasing trend in the Pearl River Delta region, where urbanization is the most significant. These trends in both the warm seasons(May-October) and during the pre-flood season(April-June) appear to be more significant. On the contrary, the annual precipitation amount in rural areas has a decreasing trend. Although the heavy and extreme precipitation also show an increasing trend, it is not as strong and significant as that in the urban areas. During periods in which a tropical cyclone makes landfall along the South China Coast, the rainfall in urban areas has been consistently more than that in surrounding areas. The precipitation in the urban areas and to their west is higher after 1995, when the urbanization accelerated. These results suggest that urbanization has a significant impact on the precipitation characteristics of Guangdong Province.  相似文献   

19.
利用四川地区自动气象站逐小时降水观测资料,分析了2010~2019年5~9月短时强降水事件24h累计降水量、频次和强度的时空分布特征,探讨了短时强降水事件发生的频次、极值分布及其与地形、海拔高度等的关系。结果表明:四川地区平均24h累计降雨量基本在50mm以上,盆地东北部、西南部、南部及阿坝州东部甚至超过100mm,最大值出现在广安,达175mm。四川地区短时强降水事件开始时间的日变化特征表现为“V”型结构的夜间峰值位相,事件持续时段多为傍晚至凌晨,时长可达10h以上,最长甚至可持续22h。在强降水事件极值的日变化上,极大值频次和降水量呈单峰结构,在03时达到最大,其后逐渐减小至15时达到谷值,而后再次增大;降水强度呈弱双峰结构,分别在04时和16时达到谷值,13时和18时达到峰值,其日变化呈“增-减-增-减”的特征。四川短时强降水事件与复杂地形有密切的关系,5~6月事件活跃区在四川盆地中部,7月在盆地西部的龙门山脉一带,8月在雅安、乐山附近,9月在盆地北部且频次明显减少;短时强降水事件的最大小时雨强可达80mm以上,出现在7~8月的盆地西部龙门山一带和南部地区。短时强降水事件随着海拔高度的增加,发生频次和日数逐渐减少,海拔2000m以上地区基本无强降水发生日出现( 峨眉山气象站例外)。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号