首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
一种浙江省冻雨落区的推算方法   总被引:4,自引:4,他引:0  
康丽莉  邓芳萍  岳平  姜文东  王灿灿 《气象》2017,43(6):756-761
2008年初浙江省出现全省性的大范围强冻雨天气,在输电线路上形成很厚的覆冰,致使浙江电网遭受巨大的损失。然而,浙江省却仅有三分之一的气象站观测到冻雨,持续时间也很短。本文利用全球再分析资料ERA-Interim结合浙江电网覆冰灾情资料,分析了2008和2013年的两次强冻雨过程。研究表明浙江省强冻雨发生时具备冷暖冷的层结结构,且中间暖层气温0℃,但相比湖南省,浙江省的暖层中心气温稍低,下层冷层厚度略厚,暖层中的液态水进人到下层冷层后易被冻结,落到低海拔地面为冰粒,或者低海拔地面层气温高于0℃,冻雨落到地面为降雨,所以冻雨期间浙江省绝大多数气象站(海拔在200 m以下)观测不到雨凇,观测到的多是冰粒或降雨;而在海拔较高的山区,冷层厚度变薄,液态水被冻结的概率大大降低,而且山区地面气温多低于0℃,有利于冻雨落在山区地面形成雨凇,因此浙江省冻雨多出现在浙中海拔400 m以上和浙南海拔600 m以上的山区。根据浙江省冻雨的特点,采用全球再分析资料进行冻雨落区推算,结果与浙江电网实际的覆冰灾情吻合得较好。本研究利用输电线路覆冰厚度确定冻雨强弱和分布,采用再分析资料推算冻雨落区,为地形起伏度较大的省份开展冻雨研究,进行冻雨监测和预报提供一条新的思路。  相似文献   

2.
2013年1月初,宁波北仑地区附近山区输电线路上出现厚度20~30 mm的严重冻雨覆冰。本文利用电力部门收集的详细灾情信息和欧洲中心高分辨率(0.75°×0.75°)的全球再分析资料,对此次冻雨过程进行了分析。结果表明,冻雨覆冰期间的暖湿气流主要来自西太平洋,从海南岛以东区域北上输送到浙江省,不仅在北仑地区上空带来大的水汽通量,还形成典型的冷暖冷的逆温层结,具备产生冻雨的空中层结条件;虽然北仑城区地面气温一直在0℃以上,观测不到雨凇现象,但附近海拔300~400 m以上的山区地面气温维持在0℃以下,且山区风速较大,非常有利于冻雨在地物上冻结形成冻雨覆冰;经过40 h左右的持续冻雨,北仑山区出现严重的覆冰灾情。  相似文献   

3.
基于逐时气象观测资料和一日4次ERA-Interim再分析资料对2018年1月4一7日(第一次过程)和24—27日(第二次过程)安徽省南部(简称皖南)两次冻雨过程中冻雨分布、时间演变及环流特征进行分析,结果表明:通过自动气象观测仪器的风速突然降为0 m·s~(-1)、风向固定不动,可大致推测出冻雨出现时间,比人工观测到冻雨出现时间早。两次冻雨天气均是在准静止锋天气下出现的,但导致冻雨形成的机制不同。第一次过程为典型的"冰相融化"机制,第二次过程为典型的"过冷暖雨"机制。东亚大陆近地面冷高压使两次冻雨天气中皖南处在东北气流之下,其带来的冷温度平流形成近地面到地面的冷垫,而750 hPa高度附近南支槽槽前暖湿气流带来暖温度平流是融化层或逆温层维持和发展的主要原因。当高空温度层结满足冻雨出现条件时,地面0℃线的位置会直接影响冻雨出现的范围。  相似文献   

4.
2008年1月下旬南昌冻雨天气过程分析   总被引:3,自引:1,他引:2  
利用南昌探空和地面观测资料,对2008年1月20日-31日南昌大气垂直温湿场进行了分析。结果表明,逆温层中冷、暖层的变化以及中低层湿度的变化是影响冻雨天气出现的重要因素。逆温层中暖层增温,以及暖层下冷层的加强,是冻雨天气发生发展的重要因素;逆温层中暖层的减弱以及冷层的加强,可导致冻雨天气减弱或结束。中低层维持深厚高湿环境也是冻雨天气出现与维持的一个重要条件;深厚高湿环境的破坏、低层湿度的减小,是导致冻雨天气减弱或结束的重要因素。  相似文献   

5.
利用探空资料和地面观测资料,对1959—2008年发生在江西的典型冻雨天气过程的大气垂直结构进行了分析。结果表明:冻雨的形成与大气饱和层、冰晶层、暖层、逆温层、冷层及特征物理量等因素的关系密切。对流层中下层的大气呈饱和或准饱和的逆温状态,饱和层顶位于暖层之上是冻雨发生的主要层结特征。冰晶层底部的平均高度为675hPa,平均厚度为2309m;暖层底部的平均高度为834hPa,平均温度为4.1℃,平均厚度为1765m;逆温层的平均温差为7.5℃;冷层的平均厚度为1668m,平均最低温度为-3.9℃;平均地面最低温度为-1.2℃;冻雨发生时大气整层比湿积分指数须增大为1000以上,干暖盖强度指数须降到-5℃以下。  相似文献   

6.
利用地面气象站的观测资料、观象台的探空资料和NCEP/NCAR再分析资料对1960—2013年北京地区20个地面气象观测站冻雨天气过程的特征及其发生条件进行了分析。结果表明:1960—2013年北京地区11月至翌年4月均可能出现冻雨天气,北京东南部的大兴区和通州区、西北部的昌平区为冻雨发生相对较频繁的地区。低层丰富的水汽和抬升条件有利于冻雨天气的出现,大气层结的垂直结构可分为无融化层(整层<0℃)和有融化层(冷—暖—冷)两类,两种类型冻雨出现的概率相当(各占50%)。通过对北京地区冻雨天气过程典型个例的对比研究发现:850—700hPa暖平流对逆温强度的变化有重要影响;无融化层时,云顶高度较高,700hPa以下气层温度为-10~0℃,降水以过冷却水的形式降落至地面发生冻结形成冻雨;有融化层时,湿层较浅薄(位于850hPa以下),暖湿空气在近地层的"冷垫"上滑行,是此类冻雨发生的有利因素之一。  相似文献   

7.
南方不同类型冰冻天气的大气层结和云物理特征研究   总被引:4,自引:0,他引:4  
利用观测资料和CAMS中尺度云分辨模式,对南方3次不同类型冻雨天气过程进行模拟,重点研究了冰冻天气中冻雨区云系宏、微观结构及大气层结特征,初步分析了冻雨形成的云物理机制.结果表明:(1)逆温层的存在是冻雨发生的必要条件,低层湿度较大的逆温常与冻雨天气有关.3次冻雨过程的冻雨区都存在逆温层,其中第一、二次过程属于锋面逆温,而第三次过程属于平流逆温.可见,逆温层结有利于冻雨的发生,但逆温层的存在仅是形成冻雨的条件之一.冻雨的发生还与水汽(湿度)、风向风速、地面特征有关.低层有水汽输入到冻雨区、地面温度等于或低于0℃,有利于冻雨形成和过冷雨水的冻结.(2)冻雨的形成需要满足3个主要条件:在对流层中高层存在冻结层,冻结层下要有暖层和逆温层,近地层有一个温度<0℃的冷却层,并且低层的冷却层相对湿度较高.中高层冻结层主要产生冰相降水粒子,中层的暖层可以确保上层降落下来的固态降水粒子(雪或霰)融化成雨滴或在融化层中直接产生液态降水.这样,雨滴下降到低空冷却层后会逐渐变成过冷雨滴,当过冷却雨滴接触到<0℃的地面或者其他物体表面时,迅速冻结形成冻雨.(3)不同冻雨区上空存在2种不同类型的云,对应云中有2种明显不同的温度层结:混合相云中的“冷-暖-冷”层结和水云中的“暖-冷”层结.具有2种不同层结特征的不同冻雨区云系,对应2种不同的微物理结构,具有2种不同的冻雨形成的云物理机制.(4)同一类型天气系统中的冻雨区,可以存在不同的温度层结、云的微物理结构和冻雨形成的机制;不同类型天气系统也可以存在特征相同的冻雨区,即冻雨形成的温度层结、云的微物理结构和冻雨形成的物理机制都相同.  相似文献   

8.
我国冬季冻雨和冰粒天气的形成机制及预报着眼点   总被引:14,自引:4,他引:10  
漆梁波 《气象》2012,38(7):769-778
利用探空和地面观测资料,通过对2001年冬季至2010年冬季我国不同区域(分为4个区域:北方、江南、华南、西南)的冻雨和冰粒天气形成的物理过程进行分析发现:(1)除北方区域外,我国其他区域的冻雨主要以暖雨机制为主。北方区域的融化类冻雨比例也仅为39%,但纬度越高,出现融化类冻雨的几率高于上述比例。暖层出现是冻雨天气的重要特征,但暖层作用主要是输送水汽和维持锋面系统,以保证降水的发生和持续,低层及地面气温普遍低于0℃可能是最重要的原因。(2)我国冰粒天气的形成机制主要以融化机制为主。冰粒天气的云顶高度普遍高于冻雨天气。冰粒天气的暖层厚度和强度均小于冻雨天气,这主要是由于弱暖层只是部分融化冰晶和雪花,使其重新冻结成为可能。冰粒天气的700hPa风速值普遍小于冻雨天气,这一方面说明冰粒天气对水汽输送条件要低一些,另一方面也反映了冰粒天气暖层较弱的特点。(3)云顶高度、暖层强度和厚度、低层冷层温度露点差、700hPa风速以及地面气温是甄别冻雨和冰粒天气的特征量,但不同区域,这些特征量的有效性不一样。西南区域冻雨和冰粒天气的主要差别在地面气温,其他特征量或差别不明显,或代表性不足,只可以作为辅助判断的因子。  相似文献   

9.
2008年1月贵州冻雨的数值模拟和层结结构分析   总被引:2,自引:0,他引:2  
张昕  高守亭  王瑾 《高原气象》2015,34(2):368-377
针对2008年初发生在贵州地区的严重冻雨过程,分别从环流背景、低空急流和水汽输送条件等方面分析了准静止锋维持的原因,并选取本次灾害最严重的第3次过程为典型个例,利用WRF模式针对准静止锋影响下的贵州冻雨进行数值模拟来研究冻雨的发生机制。模拟结果较好地反映出高低空环流形势场特征,强雨雪降水带的走向、落区,以及地面温度的分布,均与观测基本吻合。通过分析高分辨率模式的模拟结果,揭示了准静止锋上贵州地区冻雨的层结结构特征及云物质在冻雨区的分布特征。研究结果表明,贵州中部的冻雨区除一般的三层结构(包含冰晶层、暖层和冷层)外,还具有典型的两层结构特征,即:高空的固体降水粒子稀少,900~600 h Pa深厚的逆温层和0℃以上的暖层使中低空存在大量液态粒子,下落的液滴经过近地面的浅薄冷层,形成大量过冷却雨滴,而后降落至地面迅速冻结。  相似文献   

10.
利用WRF中尺度数值模式对2008年1月26—29日中国南方一次雨雪过程进行数值模拟,并根据模拟结果对云微物理过程、逆温区和地面温度等环境条件进行了分析。结果表明:华南地区冻雨天气对应了两种云微物理结构:一种是由液水形成的降水元在下落过程中经过"暖—冷"层结形成冻雨,另一种是由冰晶、雪晶和液水形成的降水经过"冷—暖—冷"层结造成的。利用模式输出的层结、地面条件以及降水状况可以大致得到冻雨可能发生的范围。  相似文献   

11.
湖南特大冰冻灾害的云物理特征与人工影响技术探讨   总被引:1,自引:0,他引:1  
樊志超  高继林 《气象》2009,35(11):84-92
我国南方2008年初的持续低温雨雪冰冻灾害造成了重大社会影响,湖南等省损失巨大.利用常规气象资料分析天气成因,利用长沙高空气象探测站的L波段探空数据和地面气象观测资料分析湖南雨凇天气的大气层结特征,利用人工增雨云系模式模拟其微物理过程.结果表明:当锋面逆温具有较厚的融化层(或温度较高)和较薄的冷却层(或气温不太低)构成"雨凇层结"时,就可形成雨凇天气;混合云降水是这次冻雨的主要降水机制,"三层模型"和"雨凇层结"可以完整和全面地解释冻雨形成的机制与过程.在此基础上根据冰晶效应和爆炸效应进一步对人工防冻雨的可行性进行了技术探讨.  相似文献   

12.
本文对2016年12月4-5日新疆克拉玛依市出现历史罕见的冻雨天气过程,通过实况观测资料的综合分析,并利用WRF区域模式进行数值模拟,分析冻雨形成的环流形势、风场、大气层结以及冻雨区云系。结果表明,大尺度环流形势为西风带上弱波动东移,配合中低层西南急流,以及冷暖气团交汇,为冻雨的形成提供了必要的天气尺度条件。本次冻雨的形成机制为融化机制,水汽输送层主要位于冰晶层,水汽受冰晶效应充分凝结后再在暖层融化,落入冷层迅速冷却为冰粒或过冷却雨滴。逆温层是冻雨发生的主要条件,并且随着逆温层减弱,降水物的相态也从冰粒转为过冷却水。本次冻雨过程与南方冻雨不同的是,克拉玛依上空在降水前期就存在强逆温,并且在冻雨发生前逆温层出现减弱再加强的变化。  相似文献   

13.
使用常规观测资料、自动气象站资料、雷达回波资料及ERA5 0.25°×0.25°再分析资料,对2021年11月8—9日发生在黑龙江省极端暴雪事件中罕见冻雨过程进行分析。结果表明:冻雨发生在降水强度较大时段,地面气温普遍低于0℃。垂直气温存在典型的“冷—暖—冷”层结特征,近地层存在强逆温层,在探空图上>0 ℃的面积比<0 ℃的大。近地层冷垫的形成是冷高压南侵所致,受到江淮气旋和地形阻挡,在海拔较低的松花江干流地区堆积形成。融化层在850 hPa低涡前部,西南或偏南暖湿低空急流携带暖湿空气像楔子一样插在冷空气中,持续的暖平流特征明显。地面冷垫与中层暖层之间有明显的锋区特征,存在强逆温层。电线积冰直径与融化层持续长短有很大的相关性。冻雨的形成符合“冰相融化”机制。雷达观测在冻雨区具有回波强度增大的特征。  相似文献   

14.
2020年11月17~20日(过程1)和2021年11月7~11日(过程2)在中国东北地区发生了两场历史罕见的冻雨事件,给吉林和黑龙江两省造成了异常严重的灾害。本文利用NCEP/NCAR和EC-ERA5再分析资料、地面气象要素实况和探空资料,对这两次冻雨过程进行了诊断分析。结果表明,地面关键影响系统均为北上发展加强的江淮气旋,冻雨区均位于地面暖锋北部冷空气一侧的等压线密集带中。冻雨形成过程存在差异,过程1主要表现为先有地面降温形成“冷垫”,之后气旋携带的暖空气在“冷垫”上爬升并配合850 hPa暖锋维持;过程2则表现为大量暖湿空气向北输送,地面气温回升,850 hPa暖舌发展,被抬升的暖湿空气降落在前期较冷的下垫面上形成冻雨。冻雨发生时,水汽条件丰沛,并伴有上升速度和锋区的明显加强。温度层结呈现“冷—暖—冷”三明治型垂直分布特征,即低空有逆温层且有融化层和近地面有冻结层同时存在。两次过程均符合多数北方冻雨的“冰相融化”机制。过程1逆温层顶高度、逆温强度及最大融化层厚度均强于过程2,且逆温持续时间长,导致电线积冰厚度差异明显。地形对冻雨有一定的影响。最后提炼出一个东北冻雨天气的三维结构模...  相似文献   

15.
天津机场地区冻雨天气分析   总被引:28,自引:3,他引:28  
利用气象常规资料,对天津机场地区1979~2002年出现的3次冻雨天气进行对比分析,找出了冻雨发生的天气形势特点和大气垂直结构特征:地面受低压控制,高空处在槽前,有明显的增温现象,槽前西南暖湿气流强盛,存在低空急流;850hPa到地面存在逆温层;700~500hPa之间有冰晶层,冰晶层内的温度为-10~-14℃:850hPa附近为暖层,暖层底部的高度在1.0~2.0km左右,暖层的厚度大约为1.0~2.0km,暖层内的温度大约为0~2℃;从地面到1.0~2.0km的高度存在冷层,冷层内温度大约为0~-2℃。以2002年12月13~14日的冻雨天气为代表个例,利用客观分析产品进行诊断分析,总结出冻雨天气预报的着眼点,为冻雨天气预报提供参考。  相似文献   

16.
本文通过耦合AFWA(Air Force Weather Agency)冻雨参数化方案的WRF模式,对2020年冬季因暖锋引发的中国北方严重冻雨灾害个例进行了模拟,结果显示模式能够很好地模拟此次冻雨过程中降水相态的空间分布。通过分析暖锋的演变、水成物云微物理特征以及降水相态的变化,得到:在辽宁中北部—吉林中东部地区,暖锋导致中低空形成“冷—暖—冷”的温度层结,该区冻雨形成机制以“冰相机制”为主,即高空的雪花落入大于0℃暖层内融化、再降落到次冻结层后形成冻雨。同时,发现存在高空无固态水成物、逆温层内暖雨下落到次冻结层在地面形成冻雨的现象,这种新机制被定义为“暖雨机制”,更多水成物垂直剖面与同期地面观测降水相态的比对,验证了新机制的存在,并解释了该机制形成的可能原因。为更深入理解冻雨形成机理以及北方冻雨的预报、预警提供科学支撑。  相似文献   

17.
利用1996—2020年怀化常规地面观测资料和探空资料,根据地面冻雨观测记录,统计并总结了怀化冻雨时空分布特征,并利用探空资料分析了怀化冻雨形成机制及温湿垂直结构特征。结果表明:(1)怀化冻雨总体上呈南多北少的空间分布特点,其中北部沅陵冻雨日数最少(20 d),南部靖州最多(75 d)。从时间分布来看,最早从12月上旬开始,最迟于3月上旬结束,主要集中在12月下旬至2月中旬,1月下旬出现最多。(2)怀化冻雨的形成可分为冰相机制和暖雨机制,温湿结构可分为六类。其中暖雨机制冻雨占总数的473 %,冰相机制冻雨占527 %;平均云顶高度,暖雨机制均在36 km以下,冰相机制高于36 km;平均云顶温度,暖雨机制-66 ℃以上,最高17 ℃,冰相机制-30 ℃以下;平均地面温度,暖雨机制和冰相机制均<0 ℃,暖雨机制<-09 ℃,冰相机制>-10 ℃;暖层顶高和底高,暖雨机制较冰相机制更高,冰相机制相差不大;暖层厚度,冰相机制基本在084 km以上,云顶温度越低,暖层厚度越厚。  相似文献   

18.
利用常规观测资料、地面自动站资料、NCEP 1°× 1°再分析资料及雷达资料等多源资料对 2020 年 11 月 18~19日发生在内蒙古东南部罕见历史极值特大暴雪事件的背景下通辽市冻雨灾害天气成因进行了分析。结果表明:冻雨发生时段,各站地面气温稳定波动较小,基本维持在-1℃~-2℃,降水量和降水强度较小,占总量的25%,强度在2mm/h以下。550 hPa至450 hPa之间存在干冷空气侵入,湿层深厚达550hPa,存在双逆温层结,近地层930 hPa(-4℃)至860hPa(3℃)存在强逆温层,其暖层最高气温为2℃至4℃,冷层最低气温为-2℃至-4℃,气温零上和零下两个层结在探空T-lnP图中面积相当,存在典型的“冷-暖-冷”层结特征。近地层冷垫是强冷高压南侵,受到江淮气旋和地形阻挡,在平原地区堆积形成,有持续的近地层冷平流补充条件重要,冷平流强度在-10×10-5℃.s -1至-20×10-5℃.s -1。中层暖区融化层是700、850hPa低涡前部,西南暖湿低空急流顶端到达冷垫上空并沿冷垫爬升叠置形成,持续的暖平流特征明显,暖平流强度在10×10-5℃.s -1至20×10-5℃.s -1。两层之间具有明显的锋区特征,雷达观测在冻雨区具有明显的回波强度增大的特征。最后讨论了冻雨复杂的成因和多种气象条件影响及预报着眼点。  相似文献   

19.
地形对2008年初湖南雨雪冰冻天气的影响分析   总被引:5,自引:5,他引:0       下载免费PDF全文
徐辉  金荣花 《高原气象》2010,29(4):957-967
利用NCEP逐日资料、探空站点资料和地面观测资料,分析了2008年初发生在湖南的第三次冰冻雨雪过程(1月25~29日)。结果表明,冰晶层、融化层、冷层这种两头冷中间暖的温度垂直分布结构以及地面微风、低温、潮湿的气象要素条件共同导致了湖南的这次严重冰冻灾害。利用中尺度数值模式MM5模拟了湖南独特的地形特征对这次冰冻过程的影响。两个敏感性试验结果表明,随着南岭山脉地形高度的降低会导致南岭北部上空的大气垂直温度层结发生变化,而这种变化并不利于湖南南部冻雨的发生,同时还在一定程度上导致南岭以北的降水增加,以南的降水减弱。  相似文献   

20.
2021年11月7日夜间-9日白天黑龙江省出现大范围雨雪、大风、降温天气。此次天气过程中南部地区雨雪相态转换频繁,出现了罕见的冻雨天气。本文通过对高低空环流演变以及大气温度垂直变化的分析,认为主要是极地冷空气向南爆发的过程中,与低层暖湿空气北上强迫产生斜压不稳定,在地面低压北侧暖锋抬升作用下出现的大范围雨雪天气。分析探空资料可以看出大气边界层起到了冷垫作用,后期地面暖锋沿低层冷垫抬升,大气温度垂直分布出现“上暖下冷”的逆温结构。此外,边界层暖湿平流的输送增加了暖层的厚度,地形影响使“冷垫”作用加强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号