首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
文章选取锡林浩特国家基准气候站1958—2017年5—9月0、5、10、15、20cm逐日平均地温资料,利用线性倾向估计、相关分析等数理统计方法,分析各层地温的变化特征及趋势。结果表明:各层平均地温均呈显著的升温趋势,升温幅度依次为0.476、0.365、0.331、0.333、0.301℃/10a,其中,2001年各层地温上升最为明显;从各层地温的年内变化规律看,在7月达到最高,9月份相差甚微;各层地温与气温之间存在极显著的相关性,其中,0cm地温和气温的相关性最高,各层地温与降水呈负相关。  相似文献   

2.
基于西藏定日气象站1980~2019年逐月平均气温、0~20cm浅层地温资料,应用气候统计方法,分析了近40a定日浅层地温的变化特征。结果表明:40年来,定日各层(除5cm外)年平均地温均呈升温趋势,升温幅度为0.03~0.187℃/10a,0cm升温率最大,15cm升温率最小,5cm地温呈不明显的下降趋势,春、冬季各层地温升温最显著,除了0cm层外各层地温夏、秋季呈降温趋势;各层(除5cm外)年平均地温从2000s后均陆续发生突变现象,各层地温突变时间点不一致,但均是从相对偏冷期跃变为相对偏暖期,0cm和20cm在2000s前后明显发生了由冷变暖的转折;定日年平均气温升温率比各层地温都大,通过了0.01水平的显著性检验,其距平变化趋势和时段与各层地温相似,年平均气温与20cm层地温的相关性最显著;5cm地温与其他层次变化规律存在明显的差异。   相似文献   

3.
曲静  王昱  张弘 《气象科技》2014,42(4):657-662
利用1961—2011年西安0~40cm浅层逐月平均地温、地面最高、最低温度和1981—2011年深层80cm、160cm和320cm逐月平均地温观测资料,采用气候倾向率、滑动t检验、功率谱等气候统计方法,研究了西安平均地温的变化趋势、变化周期、气候突变和异常年份等。结果表明:在全球气候变暖背景下,西安各层年、季平均地温除夏季各浅层呈降温趋势外其余均为升温趋势,升幅为0.11~0.56℃/10a,0~20cm各层及160cm平均地温升温率为春季最大,40cm、320cm为冬季最大,80cm为秋季最大,各层均为夏季最小。地面最高年平均温度呈略下降趋势,最低呈明显升高趋势。浅层0~40cm年平均地温存在显著的2.3年、3.6~4.6年的变化周期以及32年的长周期震荡。年平均地温在1993年或1994年发生了突变;浅层春季平均地温在20世纪90年代中后期发生了突变,夏季在20世纪70年代末或20世纪90年代中期发生了两次突变,秋冬季基本未出现突变;深层各季在20世纪90年代中期发生了突变。年平均地温除160cm未出现异常年份外,80cm在1993年出现异常偏低年,其余各层在21世纪00年代初中期出现异常偏高年;春季多偏高年份,夏季多偏低年份,冬季异常年份最多。地温和气温变化的相关性达到0.82以上,说明气温的变化是影响地温变化的主要因素。  相似文献   

4.
近58 a黔南地区5~20 cm平均地温年际变化呈上升趋势。气候倾向率随土壤深度增加升幅逐渐增加,近10 a浅层平均地温有明显增加的趋势。各层地温周期性分布不同。四季地温均呈增温趋势,随土壤深度增加气候倾向率逐渐增大。平均地温月变化呈单峰形势,暖月随深度增加地温递减,冷月随深度增加地温递增。空间上浅层地温呈自北向南逐渐升高的分布特征。  相似文献   

5.
沙漠腹地秋季地温变化特征及其与气温的关系   总被引:1,自引:0,他引:1  
以古尔班通古特沙漠腹地为试验区,利用2009年9~10月不同深度的地温数据,分析了秋季各层地温的变化特征以及其对气温的响应。结果表明:秋季各层地温呈波动缓慢下降过程,变化倾向率为负值,且由浅至深向下递减,0 cm的地温下降趋势显著,递减变化率为0.22℃/d;地温日变化呈正弦曲线变化过程,白天高,夜间低。随深度的增加,...  相似文献   

6.
班玛县近30年浅层地温变化特征分析   总被引:1,自引:0,他引:1  
采用班玛县国家基本气象站1988—2017年逐月浅层地温观测资料,利用气候倾向率、累积距平、滑动平均法等统计方法,对班玛县近30a来浅层地温的变化特征进行分析。结果表明:班玛县各层地温均呈现出显著增温的趋势,其增温幅度在0.323~0.695℃/10a。其中0cm地温平均地温增加趋势最为明显,5cm平均地温升幅最小,浅层地温升温趋势随着深度的增加而增加;班玛县1988—2017年春、夏、秋、冬四季不同浅层地温的气候倾向率不尽相同,而且均呈现出逐年增加的趋势。冬季0cm地温的增温幅度最为显著,其余三季20cm地温的增温幅度最为显著;在月分布特征上,5—8月浅层地温逐渐升高,升温的趋势是随着深度的增加而递增,说明浅层地温对气候变暖的影响是随着深度的增加而增强的,9—10月地温逐渐下降,降温的趋势随着深度的增加而递减。  相似文献   

7.
本文利用恩施市1966~2016年近50年的年平均气温、0~20cm平均地温资料,采用线性倾向估计、统计回归、Mann-Kendall等方法对恩施市年均气温和各层地温的年代际变化、季节变化、突变情况、地气温差变化等进行了研究分析。结果表明:恩施市近50年平均气温和各层地温总体呈显著性上升趋势;年均气温和地温的年代际平均阶段性特征明显,1966~1996年,气温和地温呈下降趋势,从1997年开始,气温和地温呈明显增暖趋势,2006~2016年年均气温和地温是近50年中最暖的10年。恩施市1966年到1980年代初期,气温和地温多波动,从1980年代初到2000年代初,平均气温和各层地温均呈现出明显变冷的趋势,地温变冷趋势更加明显;年均气温在1998年突变为增暖趋势,且近10年增暖趋势十分显著,而各层地温突变为增暖趋势是在2001年,较年均气温晚三年。各层地温与气温的季节变化趋势具有较好的一致性,气温和各层地温从1966~2016年升温幅度在春季最明显,夏季最不明显;春季平均气温较各层地温的升温速率均偏小,夏季平均气温和各层地温有增温趋势,但增温趋势不显著,秋季和冬季,土壤深度越深,气候倾向率越小,增温趋势越不显著。近50年恩施市地气温差为正,除0cm地气温差呈增大趋势外,5~20cm地气温差均呈减小趋势,且随着土壤深度的增加,地气温差减小的幅度越大。   相似文献   

8.
选取1981-2016年中国江淮地区28个气象站的0~20 cm地温观测资料,运用经验正交函数分解(EOF)和集合经验模态分解(EEMD)方法,得到江淮地区0~20 cm地温及气温多时间尺度的振荡规律。结果表明:江淮地区全区域有明显的空间一致性,特征向量值在全地区均为负值,时间系数在20世纪90年代中后期由正转负。1981-2016年江淮地区浅层地温和气温均表现为波动上升的趋势,其中0 cm地温的气候倾向率为0.65℃·(10a)-1,增温幅度大于5~20 cm层地温及气温。0 cm、5 cm、10 cm、20 cm四层地温及气温分解后的IMF1和IMF2分量的周期分别为准3年和准7年,且80年代的振幅要小于之后的年份,表明浅层地温及气温在80年代是稳定少变的,进入90年代波动幅度增大。年际变化在江淮地区0~20 cm地温及气温的长期变化中占主导地位。对36年0~20 cm地温的气候平均值进行分解可得,江淮地区各站点浅层地温的延伸期尺度周期基本分布在准12~16天和准26~33天两个周期内。  相似文献   

9.
天山中段雪岭云杉林浅层地温特征分析   总被引:1,自引:0,他引:1  
森林地温与树木生长密切相关,对地温的研究有利于利用森林气象资料做好森林气象服务工作。本文利用新疆天山雪岭云杉林2009年的地温数据,分析不同深度地温的日变化、季节变化及年变化规律。结果表明:20 cm以上各层地温日变化均呈正弦曲线,近地表变化趋势明显,随着深度的增加,其变幅急剧减小;40 cm地温始终高于10 cm和20 cm地温;不同深度地温日变化的相位存在明显差异。夏季地温呈现随深度增加地温降低的垂直变化特征;冬季不同深度的地温呈现随深度增加地温升高的垂直变化特征。3月中旬至8月中旬,近地层的地温高于深层,而在8月中旬至翌年3月中旬,深层地温高于表层。  相似文献   

10.
近45年拉萨浅层地温对气候变化的响应   总被引:12,自引:0,他引:12  
杜军  李春  廖健  拉巴  路红亚 《气象》2007,33(10):61-67
利用1961-2005年拉萨0~40cm各层逐月平均地温,采用气候倾向率、累积距平、信噪比等气候统计方法,研究了近45年拉萨浅层平均地温的变化趋势、气候突变和异常年份等。结果表明:浅层各季节平均地温均呈现极显著的升高趋势,升温率为0.43~0.60℃/10a,春季最大,夏季最小。各层年平均地温以0.45~0.66℃/10a的升温率显著上升,40cm深度的升温率最大,与同时期平均气温的升温率比较,地温比气温对气候变暖的响应更强。20世纪60年代至90年代浅层年、季平均地温呈明显的逐年代升高趋势,以冬、春季最为明显。20世纪60年代到80年代中期为偏冷阶段,80年代后期至90年代地温为偏暖阶段。各浅层平均地温在1986年秋季均发生了突变,冬季突变时间都出现在1984年。年平均地温除在40cm处1999年异常偏高外,其它各层为异常偏低年份,且发生在20世纪60年代。气温升高是影响地温上升的主要原因。  相似文献   

11.
近50年乌鲁木齐浅层地温变化特征分析   总被引:1,自引:0,他引:1  
根据乌鲁木齐站1962—2011年近50a的地面和浅层日平均地温资料,采用气候倾向率、Cramer法、Yamamoto法和Mann—Kendall法进行变化趋势以及突变检验。结果表明:乌鲁木齐近50a0cm地表温度和5~20cm年平均浅层地温总体呈上升趋势,其中:1962—1985年呈下降趋势,1985年之后明显上升。年平均浅层地温在春、夏两季呈现下降趋势,尤其是在1962—1985年地温下降的趋势均达到了0.01显著性水平,秋、冬两季,则是上升趋势,其中:冬季地温在近50a增温最为显著,并且随深度增加增温的趋势减缓。1976—2001年乌鲁木齐0~20cm各层地温均处于相对偏冷的气候态,年平均地温在1986年前后发生转折,在2005年左右发生增暖的突变现象,至2011年一直处于上升趋势,但尚未出现突变时间区域。  相似文献   

12.
利用阿勒泰地区1961-2010年7个观测站暖季(5-9月)5-20cm土层的逐月平均地温资料,采用气候统计诊断分析方法,对近50a阿勒泰暖季浅层平均地温、各月平均地温的气候变化趋势及突变特点进行研究。结果表明,近50a阿勒泰地区暖季浅层地温呈上升趋势,富蕴升温幅度最大,为0.88℃/10a(P<0.01)。暖季浅层各月平均地温均呈上升趋势,升幅最大值为1.02-1.07℃/10a(P<0.01),均以富蕴或青河升温幅度最大, 7月增幅最大,9月增幅最小,各层自1981年以来增温尤为明显。1961-2010年暖季大部站点平均浅层地温在1972年发生了突变,而各月平均浅层地温大部分在20世纪60年代中期到70年代中期发生了突变。暖季5cm、10cm、15cm、20cm 4个土层温度与同期气温和地表温度均呈显著的正相关关系,二者的显著升高正是导致浅层地温呈明显升高趋势的原因。  相似文献   

13.
以新疆塔城基准站自动气象站2006年11月—2010年3月积雪深度≥0cm的451天为样本,对0cm地面温度、雪面(草面)温度、气温及云量、日照时数、雪深进行统计分析,找出不同积雪深度下地面温度、雪(草)面温度与气温的关系,结果显示:雪(草)面温度在积雪期,变化趋势与气温一致,受云量及日照时数影响明显,平均雪温低于平均气温;地温随雪深变化有20cm和50cm两个分界点,雪深≤20cm时,地温受雪深、气温影响较大,变化趋势与气温基本一致,地温高于气温,雪层较薄时,受云量和日照影响较明显。雪深超过20cm时,地温变幅趋向定值,地温变化仅受长时间温度变化影响,且不低于-5℃;雪深超过50cm时,地温趋于定值(-1℃)。  相似文献   

14.
利用1985—2021年呼伦贝尔市15个国家气象站各层地温、第一冻土层下限、最大冻土深度资料,研究呼伦贝尔市冻土气候演变特征,同时采用重标极差(R/S)和非周期循环分析,统计最大冻土深度等气象要素时间序列的Hurst指数、分维数和非周期循环的平均循环长度,分析最大冻土深度等气象要素变化趋势和记忆周期。研究表明:(1)0cm地温、40cm平均地温、80cm平均地温都呈现出增大趋势,且0cm地温增大趋势最显著,特别是0cm地温最小值增大更加明显。(2)冻结持续日数呈缓慢减小趋势,其中中部偏北海拔超过600 m山区持续时间最长,西南部和东南部地区持续时间最短。(3)7月中旬冻土在北部地区开始,9月开始到10月下旬向西南和东南地区扩展,次年5月上旬至6月下旬自西南和东南地区向北部地区开始消失。(4)最大冻土深度呈现逐年减小趋势,突变年份出现在1988年,最大冻土深度在7-9月最浅,次年2-4月最深,10月-次年1月是最大冻土深度不断加深的过程,5-6月是最大冻土深度显著减小的时段,其中最大冻土深度最大值出现在西部偏南地区。(5)R/S和非周期循环分析表明,冻结持续日数和最大冻土深度未来减小趋势仍将持续,持续时间分别为10 a和8 a;0cm地温、40cm平均地温、80cm平均地温未来增大趋势仍将持续,持续时间都为12 a。  相似文献   

15.
为了掌握沈阳地区地温变化规律,并提供更好的大田地温预报服务,降低播种风险,提高粮食生产安全,利用沈阳地区7个气象站点1981-2015年地温和气温数据,运用数理统计方法,分析近35 a地温和气温的变化规律,建立了春播期(4月和5月)地温预报模型。结果表明:1981-2010年,年代际温度呈上升趋势,气温的变化导致地温的变化也更加明显,气温和各层地温的气候倾向率为0.426-0.549℃/10 a,4-10月0-5 cm、5-10 cm、10-20 cm每一层的地温差为1.5℃、0.5℃和0.5℃;0-20 cm地温以及气温在1996年前后发生了突变;春播期西部地区0 cm、5 cm、10 cm的地温和气温差值4-5月由较低转为较高;地温预报模型t检验的P值在P=0.01水平差异均不显著,相对误差控制在±10%以内,可以用于沈阳春播期(4月和5月)地温预测。  相似文献   

16.
利用1981-2018年德令哈市国家基本气象站浅层地温、0cm地温和气温数据资料,分析了浅层地温的年、季、月气候变化特征。结果表明:近38a德令哈市年5~20cm平均地温呈显著上升的气候趋势;春季5~20cm平均地温上升趋势最快,秋季5cm、10cm平均地温上升趋势最慢,冬季15cm、20cm平均地温上升趋势最慢;全月5cm平均地温呈上升的气候趋势,1-11月份10cm、15cm、20cm平均地温呈上升的气候趋势,12月份呈下降的气候趋势。Mann-Kendall检验法分析发现年5cm、10cm平均地温在1993年发生突变,年15cm、20cm平均地温在1994年发生突变。年、季5~20cm平均地温与0cm平均地温和平均气温呈显著的正相关性。年、季5~20cm平均地温异常偏冷年份均出现在20世纪80年代,异常偏热年份多出现在21世纪10年代。  相似文献   

17.
2006-2010年下辽河平原地温和土壤热通量变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
依据国家沈阳农田生态系统野外研究站2006-2010年监测数据,分析0-100cm 土层8个层次的地温、0-100 cm地温、地温极值、0-20 cm地温与气温的关系和土壤热通量的变化趋势。结果表明:从年际变化看,8个层次地温和地温极值呈下降趋势;0 cm层次地温变化受外界影响较大。研究区域年尺度0-20 cm地温与气温有比较一致的变化规律。作物生长季节,可分为4-7月气温上升和8-10月气温下降两阶段;这两个不同阶段的0-20 cm地温与气温分别做线性拟合,与整个生长季4-10月线性拟合相比,线性相关性可信度更高。土壤热通量受气温和土壤质量含水量影响年际变化较大,年尺度土壤热通量≥0 MJ/m2,该区域地表是热汇。  相似文献   

18.
西安近63年气候变化特征综合分析   总被引:1,自引:0,他引:1       下载免费PDF全文
根据西安1951—2013年气温、降水,1971—2013年浅层地温,1981—2013年深层地温资料,采用线性倾向率、Mann-Kendall等方法分析西安气候变化。结果表明:1)西安近63a气温增温明显,降水缓慢波动下降;各层年平均地温呈升温趋势,160cm升温最大,15cm升幅最小。2)年及四季平均气温除夏季在20世纪70—80年代呈下降趋势,其余各年代际均呈上升趋势,21世纪后升温最为迅速;各年代际降水呈显著波动趋势。3)西安气候变暖主要表现在春、冬季;四季降水均有所减少,夏、秋两季降水量占年降水量的70%以上,主导年降水量的变化。4)西安年平均气温、地温20世纪90年代发生升温突变,与城市化快速发展时期相吻合。  相似文献   

19.
基于天山北麓7个气象站1963~2010年逐月0 cm最高、最低地温资料,采用线性趋势分析、Mann-Kendall检验、Morlet小波等方法,分析了天山北麓地温变化特征。结果表明:(1)近48 a来,天山北麓0 cm最高地温以精河为高值中心,总体上呈西高东低的特征,最低地温以乌苏、乌鲁木齐为高值中心的中西部地区普遍较高;(2)0 cm地温呈显著上升趋势,最低地温增幅尤为显著,达0.87℃/10 a;(3)0 cm最低地温在2002年发生突变,而最高地温未出现突变;(4)0 cm地温异常年份主要发生在2006年之后,以偏暖为主。  相似文献   

20.
喀什市196 1—2007年浅层地温的变化   总被引:1,自引:0,他引:1  
利用1961-2007年喀什0-40cm各层逐月平均地温,采用气候倾向率和累积距平气候统计方法,研究了近47a喀什浅层平均地温年代际、年际和各季的气候变化特征。结果表明:各层年平均地温以0.1~0.4℃/10a的升温率显著上升,15cm深度的升温率最大;浅层各季节平均地温均呈现为显著的升高趋势,升温率为0.1~0.5℃/10a,春季最大、夏季最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号