首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
青藏高原对亚洲夏季风爆发位置及强度的影响   总被引:14,自引:7,他引:14       下载免费PDF全文
通过数值模拟,研究了青藏高原位于不同经度位置时,亚洲夏季风的爆发和演变情况,从动力和热力学角度分析了青藏高原大地形对亚洲夏季风爆发位置的影响。结果表明,青藏高原的“热力滑轮”作用引起:高原东南面热带陆地上空的偏南气流加强,降水增加,凝结潜热加强;高原西南面热带陆地上空出现偏北气流,降水减弱,陆面的感热加热加强。青藏高原对于亚洲夏季风的爆发地点有锚定的作用,在热带海陆分布的背景下,使亚洲夏季风首先在高原东南面的海洋东岸—陆地西岸爆发,并使亚洲季风降水重新分布。  相似文献   

2.
青藏高原影响亚洲夏季气候研究的最新进展   总被引:40,自引:6,他引:40  
文中回顾了近 10a来吴国雄等在青藏高原影响亚洲夏季气候研究方面的最新进展。通过分析东西风交界面的演变证明 ,由于青藏高原的春季加热 ,亚洲季风区对流层低层冬季盛行偏东风转变为夏季偏西南风最早发生在孟加拉湾东部 ,与其相伴随的激烈对流降水出现在其东面。因此孟加拉湾东部至中印半岛西部是亚洲季风最早爆发的地区。同时也指出盛夏伊朗高原和青藏高原加热所激发的同相环流嵌套在欧亚大陆尺度的热力环流中 ,从而加强了东亚的夏季风 ,加剧了中西亚的干旱 ;并通过其所激发的波动对夏季东亚的气候格局产生重要影响。文中还比较了夏季南亚高压的伊朗模态和青藏模态性质的异同及其对亚洲夏季降水异常分布的不同影响。  相似文献   

3.
青藏高原积雪与亚洲季风环流年代际变化的关系   总被引:12,自引:1,他引:12  
利用高原测站的月平均雪深资料和NCEP/NCAR再分析资料,分析了20世纪70年代末以来,青藏高原积雪的显著增多与亚洲季风环流转变的联系。研究表明,高原南侧冬春季西风的增强及西风扰动的活跃是造成青藏高原冬春积雪显著增多的主要原因,高原积雪的增多与亚洲夏季风的减弱均是亚洲季风环流转变的结果;20世纪70年代末以来,夏季华东降水的增多、华南降水的减少及华北的干旱化与青藏高原冬春积雪增多及东亚夏季风的减弱是基本同步的,高原冬春积雪与华东夏季降水的正相关、与华北及华南夏季降水的负相关主要是建立在年代际时间尺度上,因此,高原积雪与我国夏季降水关系的研究应以亚洲季风环流的年代际变化为背景。  相似文献   

4.
亚洲季风季节进程的若干认识   总被引:4,自引:0,他引:4       下载免费PDF全文
简要归纳了不同时期随着观测资料的更新对亚洲季风季节进程的若干认识。南海季风试验前,研究认识了东亚季风系统与南亚季风系统的区别。南海季风试验后,对季风进程有了更多的认识,江南副热带雨季开始于4月初,中印半岛热带雨季开始于4月底,南海热带雨季突然建立于5月中旬,都具有半年际的干湿转换。南海中部季风爆发后,亚洲季风在南亚、青藏高原东侧和东亚-太平洋地区全面爆发并由南向北推进。利用近年来高分辨率资料并考虑热带地区半岛陆海地形与热力的影响,认识到亚洲存在5个夏季季风槽与降水相联系的系统,它们分别是西南亚(阿拉伯海)夏季热带季风、南亚(孟加拉湾)夏季热带季风、东南亚(南海)夏季热带季风、西北太平洋夏季热带季风和东亚夏季副热带季风。  相似文献   

5.
范广洲  罗四维 《高原气象》1997,16(2):140-142
利用一个耦合了简化的简单生物圈模式的大气环流谱模式(SSiB-GCM),初步探讨了青藏高原冬季积雪异常对东、南亚夏季季风环流和降水的影响及其机理。结果表明,高原地区积雪增加将使随后地夏季东、南来季风明显减弱,主要表现为东、南亚季风区降水减少,索马里急流、印度季风的印度西南气流弱弱。另外,还提出欧亚大陆雪盖与整个高原雪盖和高原东部雪盖对东、南亚夏季风影响的敏感问题。与欧亚大陆雪盖相比,高原雪盖是影响  相似文献   

6.
Mechanisms determining the tropospheric temperature gradient that is related to the intensity of the Asian summer monsoon are examined in an intermediate atmospheric model coupled with a mixed-layer ocean and a simple land surface model with an idealized Afro–Eurasian continent and no physical topography. These include processes involving in the influence of the Eurasian continent, thermal effects of the Tibetan Plateau and effects of sea surface temperature. The mechanical effect on the large-scale flow induced by the Plateau is not included in this study. The idealized land–sea geometry without topography induces a positive meridional tropospheric temperature gradient thus a weak Asian summer monsoon circulation. Higher prescribed heating and weaker surface albedo over Eurasia and the Tibetan Plateau, which mimic effects of different land surface processes and the thermal effect of the uplift of the Tibetan Plateau, strengthens the meridional temperature gradient, and so as cold tropical SST anomalies. The strengthened meridional temperature gradient enhances the Asian summer monsoon circulation and favors the strong convection. The corresponding monsoon rainbelt extends northward and northeastward and creates variations of the monsoon rainfall anomalies in different subregions. The surface albedo over the Tibetan Plateau has a relatively weak inverse relation with the intensity of the Asian summer monsoon. The longitudinal gradient of ENSO-like SST anomalies induces a more complicated pattern of the tropospheric temperature anomalies. First, the positive (negative) longitudinal gradient induced by the El Niño (La Niña)-like SST anomalies weakens (strengthens) the Walker circulation and the circulation between South Asia and northern Africa and therefore the intensity of the Asian summer monsoon, while the corresponding monsoon rainbelt extends northward (southward). The El Niño (La Niña)-like SST anomalies also induces colder (warmer) tropospheric temperature over Eurasia and warmer (colder) tropospheric temperature over the Indian Ocean. The associated negative (positive) meridional gradient of the tropospheric temperature anomalies is consistent with the existence of the weak (strong) Asian summer monsoon.  相似文献   

7.
Numerical experiments with different idealized land and mountain distributions are carried out to study the formation of the Asian monsoon and related coupling processes. Results demonstrate that when there is only extratropical continent located between 0 and 120°E and between 20/30°N and the North Pole, a rather weak monsoon rainband appears along the southern border of the continent, coexisting with an intense intertropical convergence zone (ITCZ). The continuous ITCZ surrounds the whole globe, prohibits the development of near-surface cross-equatorial flow, and collects water vapor from tropical oceans, resulting in very weak monsoon rainfall. When tropical lands are integrated, the ITCZ over the longitude domain where the extratropical continent exists disappears as a consequence of the development of a strong surface cross-equatorial flow from the winter hemisphere to the summer hemisphere. In addition, an intense interaction between the two hemispheres develops, tropical water vapor is transported to the subtropics by the enhanced poleward flow, and a prototype of the Asian monsoon appears. The Tibetan Plateau acts to enhance the coupling between the lower and upper tropospheric circulations and between the subtropical and tropical monsoon circulations, resulting in an intensification of the East Asian summer monsoon and a weakening of the South Asian summer monsoon. Linking the Iranian Plateau to the Tibetan Plateau substantially reduces the precipitation over Africa and increases the precipitation over the Arabian Sea and the northern Indian subcontinent, effectively contributing to the development of the South Asian summer monsoon.  相似文献   

8.
夏季青藏高原大气热源与西南地区东部旱涝的关系   总被引:9,自引:5,他引:9       下载免费PDF全文
利用1959~2006年西南地区东部20个测站逐日降水量资料和NCEP/NCAR再分析月平均资料,分析了夏季青藏高原大气热源特征,指出了影响西南地区东部夏季旱涝的热源关键区域,并就关键区大气热源对该区域夏季旱涝的影响进行了诊断,得出了以下主要结论:西南地区东部夏季降水与高原主体东南部的热源变化关系密切,当该区域(该区域...  相似文献   

9.
NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper. Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007. The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part. As a result, relationships between an atmospheric heating source (hereafter called ) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper. The results are shown as follows. The flood/drought to the north of Yangtze River (NYR) was mainly related to the over the East Asia summer monsoon region: when the over the Philippines through Western Pacific and the south China was weakened (strengthened), it would probably result in the flood (drought) in NYR; and the precipitation on the south side of Yangtze River (SYR) was related to the over the east Asia and Indian summer monsoon region: when the over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened (weakened), and the over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened (strengthened), it will lead to flood (drought) in SYR.  相似文献   

10.
利用2008—2014年全国高垂直分辨率的L波段探空资料,统计分析了东亚夏季风爆发前后我国不同区域对流层顶高度变化特征。研究表明:夏季风爆发后,对流层顶高值区向北推进,最大值位于青藏高原南部及其东南部地区;对流层顶高度的向南梯度和向东梯度大值区均由爆发前的30°~40°N北移至40°~50°N;受地面加热和垂直运动的影响,中国东北部和中东部在夏季风爆发后对流层升温,平流层-对流层过渡层降温,大气温度梯度增加,对流层顶上升,其中中国东北部在夏季风爆发前,大气温度廓线为双峰结构,易出现双对流层顶,第一对流层顶较低;中国南部整层大气温度廓线在夏季风爆发后略有增加,对流层顶有所下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号