首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The features of the temperate jet stream including its location, intensity, structure, seasonal evolution and the relationship with the Asian monsoon are examined by using NCEP/NCAR reanalysis data. It is indicated that the temperate jet stream is prominent and active at 300 hPa in winter over the region from 45°-60°N and west of 120°E. The temperate jet stream is represented by a ridge area of high wind speed and dense stream lines in the monthly or seasonal mean wind field, but it .corresponds to an area frequented by a large number of jet cores in the daily wind field and exhibits a distinct boundary that separates itself with the subtropical jet. A comparison of the meridional wind component of the temperate jet stream with that of the subtropical jet shows that the northerly wind in the temperate jet stream is stronger than the southerly component of the subtropical jet, which plays an important role in the temperate jet stream formation and seasonal evolution, and thus the intensity change of the meridional wind component can be used to represent the temperate jet stream's seasonal variation. Analysis of the temperature gradient in the upper troposphere indicates that the temperate jet stream is accompanied by a maximum zonal temperature gradient and a large meridional temperature gradient, leading to a unique jet stream structure and particular seasonal evolution features, which are different from the subtropical jet. The zonal temperature gradient related to the land-sea thermal contrast along the East China coastal lines is responsible for the seasonal evolution of the temperate jet. In addition, there exists a coordinated synchronous change between the movement of the temperate jet and that of the subtropical jet. The seasonal evolution of the meridional wind intensity is closely related to the seasonal shift of the atmospheric circulation in East Asia, the onset of the Asian summer monsoon and the start of Meiyu in the Yangtze and Huaihe River Valleys, and it correlates well with summer and wint  相似文献   

2.
POSSIBLE RELATIONSHIP BETWEEN ENSO AND BLOCKING IN KEY REGIONS OF EURASIA   总被引:2,自引:0,他引:2  
Using reanalysis data provided by the U.S.National Centers for Environmental Prediction/National Center for Atmospheric Research,the potential relationship between the El Ni?o-Southern Oscillation (ENSO) cycle and blocking highs in three key regions of Eurasia (Ural,Baikal,and Okhotsk) from 1950 to 2008 is analyzed.Composite analysis of 500 hPa geopotential height field during different stages of ENSO reveals that in the winters of El Ni?o (EN) years,there is significant negative anomaly of geopotential height in the three key regions.In the winters of La Ni?a (LN) years,on the other hand,significant positive anomaly of geopotential height is observed in Eastern Ural,Baikal,and Okhotsk.In summer,Okhotsk exhibits positive anomaly,which is significant at a confidence level of 90% by Student’s t-test during the developing stage of an LN year.In the developing stage of an EN year,geopotential height field at 500 hPa manifests positive (negative) anomaly in Baikal (Ural and Okhotsk),while the geopotential height field at 500 hPa exhibits positive (negative) anomaly in Ural and Okhotsk (Baikal) during the decaying stage of both EN and LN years.However,these abnormities are insignificant in a developing EN year,decaying EN year,and the summer of a decaying LN year.By analyzing 500 hPa geopotential height field during different phases of the ENSO cycle,it is observed that results of the case study are consistent with those of composite analysis.Annual average blocking is likewise examined during the different stages of ENSO from 1950 to 2008.Combined with composite analysis and case study,results indicate that blockings in the three key regions are suppressed (enhanced) during the winters of EN (LN) years.In summer,the influence of ENSO on the blockings in the three key regions is not as significant as that in winter.Evidently,developing LN may enhance blockings in Okhotsk.Influence factors on blockings are various and complex.This paper indicates that the influence of ENSO on blockings cannot be neglected,and that it is crucial to related operational forecasting as a potential signal.  相似文献   

3.
Previous studies have suggested a poleward shift of the zonally averaged jet stream due to rapid warming over continents.However,the regional characteristics of the change in the jet stream are not yet understood.Here,we present evidence suggesting that the East Asian westerly jet did not shift poleward in past decades(1980-2004 relative to 1958-1979),both in winter and summer.Rather,the jet axis has moved southward in summer,but its meridional position is steady in winter.The main change of the jet stream in winter is the enhancement of its intensity.These changes in both summer and winter are consistent with the corresponding changes in the large meridional tropospheric temperature-gradient zone.Based on these results,we suggest that the changes of the jet stream over East Asia are unique and are different from the zonal mean jet stream over the Northern Hemisphere and over the North Atlantic region.  相似文献   

4.
A diagnostic analysis is performed of the quasi-biennial oscillations during the ENSO cycle and the results are based to study the interactions between ENSO and the Asian monsoons. It shows that the Asian monsoons have significant influence on the ENSO cycle on the quasi-biennial scale. Materialized through the onset and southward progression of the winter monsoon, the influence appears in the tropical western Pacific to excite severe convection and to further affect the ENSO cycle. The phenomenon is not only reflected in the quasi-biennial mode but the annual variation of the Asian winter monsoon in reality.  相似文献   

5.
The winters of 1997/1998 and 1998/1999,corresponding to El Ni(?)o and La Ni(?)a episodes,respectively, were two typical rain-abundant and-scarce seasons for the southern China.In order to understand the cause of the anomalous precipitation during the two winters,a comparative analysis technique has been employed to investigate the differences in general circulation and moisture transportation between the two seasons. The results show that the abundant rainfall during the winter of 1997/1998 was associated with the ENSO warm episode event,eastward shifted weak westerly trough/ridge,weakened East Asian winter monsoon (EAWM),strengthened subtropical high,and presented two anti-cyclonic circulations over Hokkaido and the Philippine Sea,respectively,as well as one cyclonic circulation over the Yangtze River Basin in the anomalous wind fields of the lower troposphere.During the rain-scarce winter,however,the patterns of equatorial sea surface temperature anomalies and the circulation systems both in upper and lower levels were nearly the opposite of those during the rain-abundant winter.It has also been discovered that the water vapor over southern China during the winters came mainly from the southwesterly flow ahead of troughs in the southern branch of westerlies and the turning flow over the South China Sea-Indo-China Peninsula area;and the moisture transportation channels varied significantly with regard to height.The intensified flow in the southern branch of westerlies and the anti-cyclonic circulation anomaly over the Philippine Sea during the winter of 1997/1998 were favorable for moisture transportation to mainland China,however the two moisture transportation streams were dramatically weakened during the winter of 1998/1999 due to weak westerly flow and the dominance of a cold high system in the lower level over the southeast coast of China.Such a significant inter-annual change of moisture transportation is a key factor resulting in the obvious difference in precipitation between the two winters.  相似文献   

6.
Low frequency characteristics of tropical Pacific wind stress anomalies in observation and simulations; from the CZ simple atmospheric model and COLA R15 AGCM are analyzed. The results show that ENSO event may be a multi-scale process, that is, ENSO time scale has the period longer than three yean; biennial oscillation and annual variability Dynamical characteristics are involved in the evolution process of wind stress anomaly with ENSO time scale: 1) the development and eastward movement of a cyclonic anomaly circulation in subtropical northwestern Pacific and weakening of Southern Oscillation result in the eastward propagation of westerly anomaly along the equator, there?fore, interactions between flows in subtropics and in tropics play an important role in the evolution of wind stress anomaly with ENSO time scale; 2) easterly and westerly anomalies with ENSO time scale are one kind of propagating wave, which differs from Barnett’s (1991). It is interesting that the evolution of observed and simulated wind stress anomalies with biennial time scale bears a strong resemble to that with ENSO time scale although their period it dif?ferent. Observed annual variability it weak during 1979-1981 and intensified after 1981, especially it reaches to max?imum during 1982-1984, and the spatial structure of the first mode is the ENSO-like pattern.  相似文献   

7.
In this study, two possible persistent anomalies of the Madden-Julian Oscillation mode (MJO) are found in the summer season (persistently Pacific active and Indian Ocean active), and an index is set to define the intensity of the two modes. They are proved to have high statistical correlations to the later ENSO events in the autumn and winter seasons: When persistent anomaly of MJO happens in the Pacific Ocean in summer, El Ni?o events are often induced during the autumn and winter seasons of that year. However, during the other MJO mode when the summer persistent anomaly of MJO occurs in the Indian Ocean, La Ni?a events often follow instead. The analysis of the atmospheric circulation field indicates that persistent anomaly of MJO can probably affect the entire Equatorial Pacific circulation, and results in wind stress anomalies. The wind stress anomalies could excite warm or cold water masses which propagate eastwards at the subsurface ocean. The accumulation of warm or cold subsurface water in the Equatorial Eastern Pacific Ocean may eventually lead to the formation of an ENSO.  相似文献   

8.
South China(SC) experienced persistent heavy rain in June 2010.The climatic anomalies and related mechanism are analyzed in this study.Results show that the large-scale circulation pattern favorable for precipitation was maintained.In the upper level,the South Asian High and westerly jet stream provided a divergent circulation over SC.In the middle and low levels,an anomalous strong subtropical high(STH) extended to the South China Sea.The southwesterly monsoon flow along the northwest flank of the STH transported abundant water vapor from the western North Pacific,the Bay of Bengal,and the South China Sea to SC.The precipitation can be classified into two types:the West Siberia low(WSL)-induced low-level cyclone mode,and the STH-induced low-level jet mode.STH and WSL indices are defined to estimate the influence of these two systems,respectively.Analysis shows that both are critical for precipitation,but their respective contributions differ from year to year.In 2010,both were important factors for the heavy rainfall in June.  相似文献   

9.
Monthly mean zonal wind data from the European Center for Medium-range Weather Forecasting(ECMWF)for December 1982, April 1983, October 1984 and ApriI 1985 are used in numerical integration as thebasic flow in a non-linear critical-layer model. The subtropical high is extensive and limited in number if simulated with the basic now in December 1982 and April 1983. It consists of 2 to 3 cells that move westward at alloscillatory periods of 1~2 months. The subtropical high, simulated with the basic flow in October 1984 and April1 985. is weak and small in coverage, or distributed in strips that contain up to 4 cells. The high. merged or spillover a short time. is moving westward. The years 1982 ~1983 are a process of EI Niño while the years 1984-1985one of La Niña. lt is known from the chart of energy flux that it oscillates by a much larger amplitude and longerperiod in the EI Niño year than in the La Niña year. All the results above have indicated that the basic flow in the EI Niño year is enhancing the subtropical high lagging by about 4 months and that in the La Niña year is decay'ing it. It is consiStent with the well-known observational fact that the SSTA in the equatorial eastern Pacitlc ispositively correlated with the extent and intensity of the subtropical high in west Pacific lagging by 1~2 seasons.The result is also important for further study of the formation, maintenance and oscillation of the subtropicalhigh.  相似文献   

10.
EFFECTS OF INDIAN OCEAN SSTA WITH ENSO ON WINTER RAINFALL IN CHINA   总被引:2,自引:1,他引:1  
Based on Hadley Center monthly global SST, 1960-2009 NCEP/NCAR reanalysis data and observation rainfall data over 160 stations across China, the combined effect of Indian Ocean Dipole (IOD) and Pacific SSTA (ENSO) on winter rainfall in China and their different roles are investigated in the work. The study focuses on the differences among the winter precipitation pattern during the years with Indian Ocean Dipole (IOD) only, ENSO only, and IOD and ENSO concurrence. It is shown that although the occurrences of the sea surface temperature anomalies of IOD and ENSO are of a high degree of synergy, their impacts on the winter precipitation are not the same. In the year with positive phase of IOD, the winter rainfall will be more than normal in Southwest China (except western Yunnan), North China and Northeast China while it will be less in Yangtze River and Huaihe River Basins. The result is contrary during the year with negative phase of IOD. However, the impact of IOD positive phase on winter precipitation is more significant than that of the negative phase. When the IOD appears along with ENSO, the ENSO signal will enhance the influence of IOD on winter precipitation of Southwest China (except western Yunnan), Inner Mongolia and Northeast China. In addition, this paper makes a preliminary analysis of the circulation causes of the relationship between IOD and the winter rainfall in China.  相似文献   

11.
By using ECMWF (2.5°×2.5°) grid data, analyzing correlation for the summer (June-August) of 1980 (the West Pacific Subtropical High (WPSH) anomalously more to the south), 1988 (the WPSH anomalously more to the north), 1981 (normal) in the west Pacific area, distribution characteristics of the low frequency waves are discussed. The relationship between distribution of the low frequency waves and intraseasonal abnormality of the west subtropical high is also analyzed. There is some discussions:(1)If the WPSH acts anomalously in summer, there is a distinct zonal wave series in the subtropical zone of the north Pacific.(2) One of the important characteristics of the WPSH abnormality is that there are low frequency geopotential high centres from east Pacific and northeast Asia, being combined in the west Pacific area.For different circulation, the combination areas are different, which define the WSPH anomalously more to the north or south.  相似文献   

12.
Features of structure and propagation of the 30 to SO day atmospheric oscillations are investigated using the ECMWF analysis of 1980-1983. Evidence is provided to confirm the characteristics of the oscillation in the equatorial region. Those in the mid-high latitudes, however, are revealed to be very different from the tropics and pose a strong barotropic structure. Horizontal coherence shows teleconnection patterns which can be identified as EAP and PNA. The wind field of the specified time scale of the oscillation appears as long-lived vortices and vortex pairs. Mid-latitude perturbations propagate clearly westwards, especially during the winter season. In the high latitudes, they propagate westwards in the winter but eastwards in the summer. Meridional propagations are rather different from region to region.  相似文献   

13.
Diagnostic techniques of CEOF, power spectrum and bandpass filter wave are applied in this paper to analyze the seasonal northward beating of the northern subtropical high using day to day geopotential fields of 2.5 × 2.5 at 500 hPa May through July in 1988 and 1991. It is concluded that it is globally observed that the subtropical high has northward beats that propagate westward; the source of beating mainly lies in the region of Arabian Sea and central Pacific and the sink in eastern Pacific; the seasonal beating is dominated by effects of the disturbance field; low frequency oscillation plays a key role in the beating and the westward propagation so that the difference in the latter in individual years is caused by the varying source of disturbance and the low frequency waves it excites.  相似文献   

14.
The variation characteristics of precipitation during the winter (between October and the following March, to be referred to as just “the winter” hereafter) in Guangdong province during the past 50 years (from 1957 to 2006) and the relationship with Pacific SST are studied using the methods of Empirical Orthogonal Function (EOF) analysis, wavelet analysis, and correlation analysis. The results show that The Guangdong precipitation during the winter exhibits quasi-periodic significant oscillations of 40 years and 2 years; rainfall is less from the end of the 1950s to the start of the 1970s and from the end of the 1990s to the present than from the mid 1970s to the mid 1990s. The frequency of sustained drought is more than sustained flooding during the winter. The Guangdong precipitation during this time period is in significantly positive correlation to the equatorial central and eastern Pacific SST, but in a significantly negative correlation with the western and northern Pacific SST east of the Philippine Sea. 61.5% of the sustained drought occurred in the phase of negative anomalies of the Ni?o3.4 index and 38.5% in the phase of positive ones. A composite analysis of atmospheric circulation is performed for the positive and negative phases of the Ni?o3.4 region associated with the sustained drought. The results showed that a weak polar vortex, a strong trough in Europe and a ridge near Balkhash Lake, active cold air and consistent northerly wind anomalies controlling Guangdong at low levels, an inactive westerly low disturbance in the low-mid latitude of the Asian continent, and a weak southern branch westerly trough, are all mutual causes for the sustained drought.  相似文献   

15.
By using the power spectrum analysis, the interannual variation of medium-range oscillation characteristics in the upper troposphere over the subtropical region in China during June-August, 1966-1981 is studied. The quasi-two and quasi-one week oscillations are the two major oscillations generally existing in the subtropical region, and their intensities have obvious quasi-triennial variation period. These medium range oscillation characteristics are closely related to the South Asian high, and in some degree to the summer precipitation in China. The quasi-two week oscillation is probably a display of the inherent oscillation of the south Asian high itself, and the quasi-one week oscillation is probably that of the forced oscillation from westerly disturbances.  相似文献   

16.
By employing a five-layer seasonal numerical weather prediction model and utilizing the National MeteorologicalCenter (NMC) objective analysis data on May 10,1991 as the initial field,three numerical experiments——diabatic withorography,adiabatic with orography and adiabatic without orography——have been carried out to investigate the dy-namic and thermodynamic effects of the Qinghai-Xizang Plateau (hereafter the Plateau) on the seasonal transition inthe early summer in East Asia.The results show that the typical seasonal transition features such as the northward shiftof the subtropical westerly jet stream,the adjustment of the long-wave in middle and high latitudes and the changes ofthe circulation in the lower troposphere can be well simulated,if the dynamic and thermodynamic effects of the Plateauare both considered in the model as in the experiment adiabatic with orography.In other two experiments,it is failed tosimulate out the seasonal transition features.The results also show that the thermodynamic effect of the Plateau acts on the atmosphere as a gradually enhancedheating source in the early summer,which makes the air temperature in 500 hPa over the Plateau increase by nearly 10℃in a month and accelerates the northward shift of the subtropical westerly jet stream about seven latitudes more north-ward in twenty days and helps the shifted jet maintain at the northern periphery of the Plateau.It is also helpful to theformation and maintenance of the Lake Balchas trough and the northward and westward extension of the Pacificsubtropical high.On the other hand,the dynamic effect of the Plateau weakens the northward shift of the subtropicalwesterly jet stream and barricades the westward extension of the Pacific subtropical high.If only the dynamic effect ofthe Plateau is considered in the model without consideration of the thermodynamic effect of the Plateau,not only theshifted jet withdraws southward but also the simulated Lake Balchas trough is 10 longitudes more eastward than that inthe diabatic experiment,and the simulated Pacific subtropical high is more eastward and northward.However,the dy-namic effect of the Plateau strengthens the vertical movements in the west and east of the Plateau and makes thelow-level jet maintain in the southeast of the Plateau.The path of the cold air and the tunnel of the water vapor in thelower troposphere during the seasonal transition period in the early summer in East Asia are determined by the couplingof the dynamic and thermodynamic effects of the Plateau.  相似文献   

17.
NUMERICAL SIMULATION OF LAG INFLUENCE OF ENSO ON EAST-ASIAN MONSOON   总被引:2,自引:0,他引:2  
By prescribing sea surface temperature anomalies(SSTAs)over eastern equatorial Pacific inJanuary—March,the lag influence of ENSO(El Nino and La Nina)on monsoon over East Asiahas been studied.The results suggest that,due to the excitation of atmospheric low-frequencyoscillation by the SSTA,ENSO has significant lag influence on the monsoon over East Asia.During the summer after E1 Nino,the subtropical high over western Pacific is intensified andshows the northward and westward displacement,meanwhile,the rainfall over East China isbelow normal,especially in North China:during the winter after E1 Nino,both the Asian troughand the winter monsoon over East Asia are strengthened.During the summer after La Nina,theanomalous subtropical high prevails over the lower reaches of Yangtze(Changjiang)River,therainfall between Yangtze and Huaihe Rivers is below normal:during the winter after La Nina,both the Asian trough and the winter monsoon over East Asia are weaker.Compared with LaNina,the effect of El Nino is stronger,but it is not always opposite to the one of La Nina.  相似文献   

18.
A zonal teleconnection has been found along the Asian jet over the Eurasian continent during summer.In this study,the authors investigated circulation anomalies in the extratropics,in particular for the zonal teleconnection,under different combinations of subtropical convection anomalies over the northern Indian continent (IND) and the western North Pacific (WNP).The outof-phase configuration (i.e.,stronger (weaker) IND convection and weaker (stronger) WNP convection) was found to be more common than the in-phase configuration (i.e.,stronger (weaker) IND convection and stronger (weaker) WNP convection),which is consistent with previous results.Composite results indicated that circulation anomalies for out-of-phase configurations of 30-60-day convection oscillations are much stronger in the middle latitudes than those for in-phase configurations.In addition,zonal teleconnection patterns are predominant for the out-of-phase configurations,particularly for the configuration of strong IND convection and weak WNP convection;however,they are either weak or obscure for the in-phase configurations.These results suggest that the zonal teleconnection pattern along the Asian jet is dependent on different combinations of the IND and WNP subtropical convection anomalies.  相似文献   

19.
Based on tropical cyclone datasets from Shanghai Typhoon Institute of China Meteorological Administration, the National Centers for Environmental Prediction (NCEP, USA) reanalysis data and the rainfall records from 743 stations in China, the impacts of cyclogenesis number over the South China Sea and the western Pacific are studied on the 30-60-day oscillations in the precipitation of Guangdong during the flooding period. The year with more-than-normal (less-than-normal) tropical cyclogenesis is defined as a ‘high year’ (‘low year’). In light of the irregular periodic oscillations, the method used to construct the composite life cycle is based on nine consecutive phases in each of the cycles. Phases 1, 3, 5, and 7 correspond to, respectively, the time when precipitation anomalies reach the minimum, a positive transition (negative-turning-to-positive) phase, the maximum, and a negative transition phase. The results showed that the precipitation of the 30-60-day oscillations is associated with the interaction between a well-organized eastward propagation system from the Arabian Sea/Bay of Bengal and a westward-propagating system (with cyclonic and anticyclonic anomalies in the northwest-southeast direction) from the South China Sea to western Pacific during the high years, whereas the precipitation is affected during a low year by the circulation over the South China Sea and western Pacific (with cyclonic and anticyclonic anomalies in the northeast-southwest direction). During the high year, the warm and wet air mass from the ocean to the west and south are transported to Guangdong by westerly anomalies and an enclosed latitudinal cell, which ascends in the Northern Hemisphere low latitudes and descends in the Southern Hemisphere low latitudes. During the low year, the warm and wet air mass from the ocean to the south is transported to Guangdong by southwesterly wind anomalies and local ascending movements. Because the kinetic energy, westerly, easterly shift, vertical velocity and vapor transportation averaged over (109–119° E, 10–20° N) is stronger in high years than those in low years, the precipitation of the 30-60-day oscillations in Guangdong is higher in high years than that in low years.  相似文献   

20.
By using the power spectrum analysis, the interannual variation of medium-range oscillation charac-teristics in the upper troposphere over the subtropical region in China during June-August, 1966-1981 is studied. The quasi-two and quasi-one week oscillations are the two major oscillations generally existing in the subtropical region, and their intensities have obvious quasi-triennial variation period. These medium-range oscillation characteristics are closely related to the South Asian high, and in some degree to the summer precipitation in China. The quasi-two week oscillation is probably a display of the inherent oscillation of the south Asian high itself, and the quasi-one week oscillation is probably that of the forced oscillation from westerly disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号