首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
夏季东亚环流年际和年代际变化对登陆中国台风的影响   总被引:44,自引:15,他引:44       下载免费PDF全文
张庆云  彭京备 《大气科学》2003,27(1):97-106
利用NCEP/NCAR再分析资料,探讨夏季东亚大气环流、大气视热源和视水汽汇的年际及年代际变化与登陆中国台风频数的关系.研究表明:夏季200 hPa风场上南亚高压中心位置偏北(南)其形态表现向东北(东南)伸展,西太平洋热带地区上空(200 hPa)的东风急流加强(减弱),中层(500 hPa)西太平洋副热带高压脊线位置偏北(南),低层(850 hPa)东亚夏季风环流偏强(弱),登陆中国台风数偏多(少).夏季东亚-西太平洋热带大气视热源和视水汽汇为正(负)距平, 即东亚热带大气出现辐射加热(冷却)和变湿(变干),登陆中国台风数偏多(少).20世纪50~60年代登陆中国台风频数处于年代际变化相对偏少期,70~90年代中期登陆中国台风频数处于年代际变化相对偏多期.夏季登陆中国台风频数的年代际变化与西太平洋热带大气视热源、视水汽汇及西太平洋热带海温的年代际变化一致,西太平洋热带大气视热源、视水汽汇及西太平洋热带海温处在年代际变化的低(高)值阶段时,夏季登陆中国台风频数也处在年代际变化的偏少(多)期.  相似文献   

2.
采用1949-2015年上海台风所提供的热带气旋资料、NCEP/NCAR全球再分析格点资料、国家气候中心提供的74项大气环流指数以及青藏高原积雪等资料,对7-9月登陆华南的热带气旋TC(不含热带低压)和台风TY(含台风及台风以上的热带气旋)的气候变化特征以及大尺度环流特征进行了分析,结果发现:7-9月登陆华南TC及TY频数均有微弱的上升趋势,且年际变化显著,但TC和TY年际变化和准十年波动变化并不总是一致,尤其是近10a来登陆华南的强台风有明显增加的趋势。7-9月登陆华南的TC占登陆中国的一半以上,并且有约3/4是来自西北太平洋生成的台风。从登陆华南TC的区间分布特征来看,以中路最多,西路次之,东路最少。亚洲季风偏弱、西太平洋副高偏西,登陆华南TY偏多,反之亦然。TC偏多(少)年,西太平洋副高偏强偏西(偏强偏东)。TC偏多年110oE以东引导气流出现的反气旋式和气旋式环流对较TC偏少年偏西,反气旋环流南部的东风异常一直延伸到华南地区东部,这样的东风引导气流异常有利于引导热带气旋登陆华南。另外,青藏高原东部和西部积雪偏多、华南气温偏高及西北太平洋海温异常偏暖的情况下也均有利于台风登陆华南。  相似文献   

3.
近50年影响广西的热带气旋变化特征   总被引:4,自引:2,他引:2  
分析了1951~2007年影响广西的热带气旋频数、强度以及初旋、终旋影响日期的变化,结果表明:影响广西的热带气旋年频数、最大强度、强度超过32.7m·s-1的热带气旋频数均呈减少(减弱)趋势,且年际、年代际变化明显,20世纪50年代至70年代为热带气旋影响偏多、偏强期,80年代以后为偏少、偏弱期.初旋影响日期呈偏晚趋势,终旋影响日期变化趋势不显著.  相似文献   

4.
海南热带气旋降水的气候特征   总被引:2,自引:2,他引:2  
整理出海南1962-2004年的热带气旋的降水资料,我们分析了海南省热带气旋降在海南省总降水中的地位及其变化特征,结果表明:海南热带气旋降水平均占年总降水量30%,但呈每10 a 3%的显著线性下降趋势;海南热带气旋降水与年总降水相关显著,年总降水显著偏少的年份,热带气旋降水偏少;热带气旋降水显著偏多的年份,年总降水量偏多;海南热带气旋降水变化的空间特征表现为明显的一致型,时间特征表现明显的周期性:高频的年际变化周期70年代前期以前为3 a周期为主,80年代中期以后以2 a的周期为主;低频的年际变化周期80年代以前以8—9 a为主,80年代以后以准6 a为主;年代际变化则以准17 a的周期为主。  相似文献   

5.
利用1951-2001年逐月NCEP再分析高度场、风场资料,COADS海表温度资料及中国147个台站逐月降水资料,运用SVD分析、SVD与回归分析相结合等方法,研究了太平洋SSTA与中国夏季降水年代际变化的相互关系,发现热带西太平洋是影响中国华南降水年代际变化的关键区,1950年代-1970年代后期,该海域SSTA为正,对应中国长江以南地区的夏季降水偏多,而长江以北则偏少;1970年代以后反之;影响中国长江中下游地区及其两侧降水年代际变化的关键区在中纬中部北太平洋,1970年代后期-1990年代前期,该海域SSTA为负,对应长江中下游夏季降水偏多,其两侧降水偏少;影响中国东北降水年代际变化的关键区是低纬中太平洋,1970年代-1980年代前期,低纬中太平洋SSTA为负,与之对应,中国东北夏季降水偏少;1950年代~1960年代中期、1990年代前、中期则反之。进一步对太平洋SSTA年代际变化影响中国夏季降水年代际变化的可能机制作了初步的研究。  相似文献   

6.
近58年来登陆中国热带气旋气候变化特征   总被引:12,自引:1,他引:11  
杨玉华  应明  陈葆德 《气象学报》2009,67(5):689-696
利用1949-2006年<台风年鉴>和<热带气旋年鉴>资料,主要分析了1949-2006年登陆中国热带气旋的频数、登陆位置、登陆季节延续期和登陆强度等要素及其概率分布的年际和年代际变化特征.结果表明:近58年来,登陆中国热带气旋年频数有减少趋势,但登陆时达台风强度的年频数变化不明显;按登陆地点分区统计发现,登陆华南地区的热带低压及(强)热带风暴年频数以减少为主,而登陆东部地区的热带气旋年频数变化不明显.登陆点历年最北位置(最南位置)有南移(弱的北移)趋势,导致登陆点历年南北最大纬度差逐渐减小,这表明热带气旋登陆区域更为集中,在23°-35°N增多,而在35°N以北和23°N以南以减少为主.登陆中国热带气旋季节延续期缩短了近1个月.热带气旋年平均登陆强度及其概率分布偏度有增加趋势,表明登陆的强台风有增加;登陆中国华南和东部地区的台风强度都有增强趋势,前者比后者趋势更明显.另外,热带气旋年最大登陆强度差长期呈现减小的趋势.  相似文献   

7.
影响中国的热带气旋极端事件年代际变化   总被引:1,自引:0,他引:1  
利用1949—2009年影响中国的热带气旋风雨资料以及登陆信息,研究影响热带气旋极端事件的年代际变化特征。结果表明:热带气旋登陆极端偏早或偏晚事件在1970和2000年代发生较少。热带气旋登陆强度(中心附近最大风力和最低气压)极端事件在2000年代发生频数最高。热带气旋降水影响时间极端事件在1970年代频数最多,大风影响时间极端事件在1980年代频数最多。日降水量和过程降水量的极值站数在1960年代最多,日最大风速极值站数在1980年代最多。  相似文献   

8.
西北太平洋热带气旋生成数在不同资料集上的差异性比较   总被引:2,自引:2,他引:0  
比较分析中国气象局(CMA)、美国台风联合警报中心(JTWC)和日本RSMC Tokyo台风中心(JMA)台风资料频次的年际、年代际变化和周期变化特征,结果表明,不同资料中心的热带气旋(TC)、台风(TS强度及以上的TC)生成数的气候值存在一定的差异,热带气旋生成数的差异较为明显,台风生成数的差异相对要小,CMA资料中热带气旋、台风生成数相对偏多;CMA与JTWC间热带气旋生成数年际间变化差异显著而难以忽略,其差异主要来自TD生成数的明显不同;三个中心关于台风生成数的一致性比较好,其中JMA台风资料与另外两个中心资料间的一致更好;CMA与JTWC西北太平洋热带气旋生成数的周期变化间无明显差异,但年代际间变化有明显差异,主要表现为1990年代的反位相;台风生成数资料可能在1960年代后期存在非均一性。  相似文献   

9.
2009年广东省汛期降水空间分布不均的气候成因   总被引:3,自引:3,他引:0  
2009年广东省汛期(4~9月)降水呈现出空间分布不一致性,采用统计方法分析引起这种现象的成因:直接原因是大气环流异常导致了季风爆发偏晚和冷空气偏弱,从而前汛期降水大部分地区偏少;而后汛期期间西太平洋副热带高压偏西偏强,导致热带气旋主要登陆及影响珠江口和粤西地区,从而后汛期降水雨带主要位于粤西南。因而,2009年汛期多种环流因素的共同作用,导致了珠江口及其以西降水偏多,其余地区降水偏少。  相似文献   

10.
2008年西北太平洋热带气旋活动异常特征及成因分析   总被引:1,自引:0,他引:1  
2008年西北太平洋热带气旋活动的特点:(1)初台异常偏早;(2)生成热带气旋异常偏少,但登陆热带气旋异常偏多,登陆热带气旋与生成热带气旋比例高;(3)从热带气旋的生成源地来看,2008年的热带气旋生成位置明显偏西.2008年热带气旋生成年频数异常偏少的主要原因:2008年仍处在生成热带气旋偏少的气候背景下,对流层低层...  相似文献   

11.
Decadal Features of Heavy Rainfall Events in Eastern China   总被引:1,自引:0,他引:1       下载免费PDF全文
Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1990s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s-1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution.  相似文献   

12.
Sumant Nigam  Bin Guan 《Climate Dynamics》2011,36(11-12):2279-2293
The twentieth century record of the annual count of Atlantic tropical cyclones (TCs) is analyzed to develop consistent estimates of its natural variability and secular change components. The analysis scheme permits development of multidecadal trends from natural variability alone, reducing aliasing of the variability and change components. The scheme is rooted in recurrent variability modes of the influential SST field and cognizant of Pacific-Atlantic links. The origin of increased cyclone counts in the early 1930s, suppressed counts in 1950?C1960s, and the recent increase (since 1990s) is investigated using the count data set developed by Landsea et al. (J Clim 23: 2508?C2519, 2010). We show that annual TC counts can be more closely reconstructed from Pacific and Atlantic SSTs than SST of the main development region (MDR) of Atlantic TCs; the former accounting for ~60% of the decadal count variance as opposed to ~30% for MDR SST. Atlantic Multidecadal Oscillation (AMO) dominates the reconstruction, accounting for ~55% of the natural decadal count variance, followed by the ENSO Non-Canonical and Pan-Pacific decadal variability contributions. We argue for an expansive view of the domain of influential SSTs??extending much beyond the MDR. The additional accounting of count variance by SSTs outside the MDR suggests a role for remotely-forced influences over the tropical Atlantic: the Pan-Pacific decadal mode is linked with decreased westerly wind shear (200?C850?hPa) in its warm phase, much as the AMO impact itself. Non-canonical ENSO variability, in contrast, exerts little influence on decadal timescales. Interestingly, the secular but non-uniform warming of the oceans is linked with increased westerly shear, leading to off-setting dynamical and thermodynamical impacts on TC activity! The early-1930s increase in smoothed counts can be partially (~50%) reconstructed from SST natural variability. The 1950?C1960s decrease, in contrast, could not be reconstructed at all, leading, deductively, to the hypothesis that it results from increased aerosols in this period. The early-1990s increase is shown to arise both from the abatement of count suppression maintained by SST natural variability and the increasing SST secular trend contribution; the abatement is related to the AMO phase-change in early-1990s. Were it not for this suppression, TC counts would have risen since the early 1970s itself, tracking the secular change contribution. The analysis suggests that when SST natural variability begins to significantly augment counts in the post-1990 period??some evidence for which is present in the preceding decade??Atlantic TC counts could increase rapidly on decadal timescales unless offset by SST-unrelated effects which apparently account for a non-trivial amount (~40%) of the decadal count variance.  相似文献   

13.
The spatiotemporal features of tropical cyclone strikes from 1949 to 2008 at 49 coastal cities of China are investigated in this study. The cities in Hainan, Guangdong, and Taiwan have high strike frequencies, with the severest and most frequent average strikes found in Taiwan. In Hainan, strike clusters appear in the mid-1950s, the early 1960s and 1970s, and the late 1980s, with relative inactive frequencies from the mid-1990s to 2008, and the clusters of strikes in Guangdong are found during the 1970s. In Taiwan, the most active strikes are found during the period 1956–1963. The return periods for all typhoons are either 1 or 2 years at the coastal cities of Taiwan in contrast to 2–5 and 4–8 years at the cities of Guangdong and Fujian, respectively. Super typhoons affect Taiwan with a frequency of once every 12–30 years on average. A tropical cyclone hazard index is also created to investigate the vulnerability at these cities.  相似文献   

14.
Prediction of the Pacific sea surface temperature (SST) anomaly in the coming decades is a challenge as the SST anomaly changes over time due to natural and anthropogenic climate forcing. The climate changes in the mid-1970s and late-1990s were related to the decadal Pacific SST variability. The changes in the mid-1970s were associated with the positive phase of decadal El Niño-Southern Oscillation (ENSO)-like SST variation, and the changes in the late-1990s were related to its negative phase. However, it is not clear whether this decadal SST variability is related to any external forcing. Here, we show that the effective solar radiation (ESR), which includes the net solar radiation and the effects of volcanic eruption, has modulated this decadal ENSO-like oscillation. The eastern Pacific warming (cooling) associated with this decadal ENSO-like oscillation over the past 139 years is significantly related to weak (strong) ESR. The weak ESR with strong volcanic eruption is found to strengthen the El Niño, resulting in an El Niño-like SST anomaly on the decadal time scale. The strong eruptions of the El Chicho’n (1982) and Pinatubo (1991) volcanoes reduced the ESR during the 1980s and 1990s, respectively. The radiation reduction weakened the Walker circulation due to the “ocean thermostat” mechanism that generates eastern Pacific warming associated with a decadal El Niño-like SST anomaly. This mechanism has been confirmed by the millennium run of ECHO-G model, in which the positive eastward gradient of SST over the equatorial Pacific was simulated under the weak ESR forcing on the decadal time scale. We now experience a reversal of the trend in the ESR. The strong solar radiation and lack of strong volcanic eruptions over the past 15 years have resulted in strong ESR, which should enhance the Walker circulation, leading to a La Niña-like SST anomaly.  相似文献   

15.
浙江热带气旋气候特征及其与环境场的关系   总被引:2,自引:2,他引:0  
梁亮  张玉娟 《气象科技》2010,38(4):444-449
根据1950~2006年共57年的热带气旋(TC)年鉴资料对影响浙江热带气旋的气候特征进行了统计,结果表明,在影响我国和登陆我国热带气旋频数呈减少趋势的背景下,影响浙江和登陆浙江的热带气旋频数呈增加趋势,20世纪90年代以来,这种相反态势尤为明显。影响和登陆浙江TC频数均存在准15年和准25年的长周期,短周期则分别为准5年和准8年。影响浙江TC平均源地较影响我国TC平均源地偏北和偏东,90年代以来,影响浙江TC平均源地偏西、偏北。通过对热带气旋集中活动期(7~9月)的东亚环流形势进行分析发现,影响浙江TC偏多和偏少年,东亚高、中、低各层环流场特征几乎相反。  相似文献   

16.
Decadal variations of summer rainfall during 1951 through 1990 are analyzed by using summer rainfall data of 160 stations in China. Four major patterns of decadal variations are identified. The decadal variations of summer rainfall showed northward shift in the eastern China from South China through the Yangtze-Huaihe River to North China. Summer rainfall in the Yangtze-Huaihe River valley underwent two obvious decadal transitions during the 40 years: one from rainy period to drought period in the end of the 1950’s, the other from drought period to rainy period in the late 1970’s. Correspondingly, the atmospheric circulation over East Asia through the western North Pacific showed two similar obvious transitions. The East Asian/ Pacific (EAP) pattern switched from high index to low index in the end of the 1950’s and from low index to high index in the late 1970’s, respectively. Hence, summer rainfall in the Yangtze-Huaihe River valley is closely associated with the EAP pattern not only in the interannual variation but also in the decadal variation.  相似文献   

17.
Summer rainfall variability (October to March) shows inter-annual to multi-decadal fluctuations over a vast area of subtropical Argentina between 28°S–38°S and 65°W–70°W. Statistically significant oscillations of quasi-period in the bands of 18–21, 6, 4 and 2 years can be found throughout the region and intra-regionally, though the latter are variable. The lower frequency variation produces alternating episodes of above and below normal rainfall each lasting roughly 9 years. This quasi-fluctuation appears to be shared with the summer rainfall region of South Africa and were in-phase related one another until mid-1970s. The teleconnection between both subtropical regions could be generated by an atmospheric-oceanic bridge through the global sea surface temperatures (SSTs), particularly those of the equatorial-tropical South Atlantic. From mid-1970s, the alternating wet and dry pattern has been interrupted in the Argentine region producing the longest, as yet unfinished, wet spell of the century. Thus, a significant change of the long-term variation was observed around 1977 toward lower frequencies. Since then the statistical model that explains more than 89% of the variance of the series until 1977, diverges from the observed values in the 1980s and 1990s. In addition the Yamamoto statistical index, employed to detect a climatic jump, reaches its major value in 1973 at the beginning of the current long wet spell. Therefore the change could be located between 1973 and 1977. Application of the t-student's test gives significant differences of mean values for pre-1977 and post-1977 sub-samples from both individual time series and the regional index series. The spectral analysis also shows changes in energy bands in concordance with the features of the change that occurred from mid-1970s. The change gives rise to a significant increment of more than 20% in average of normal rainfall over the region. Conversely, a drought between mid-1980s and the 1990s has been observed in the South African counterpart with severe characteristics, thereby continuing the quasi-18-year oscillation. Consequently, the low-frequency coherent behaviour between both the Argentine and South African regions is lost from the mid-1970s. The analysis of association of wet/dry spells and warm/cold, El Niño/La Niña episodes appears to be not significant at scales of year-to-year variability although at decadal to multi-decadal scales the association could be relevant. More than one process of multi-decadal variability of global SSTs could influence the Argentine summer rainfall region and the former bi-decadal teleconnection. Finally, potential hypothetical factors of change are discussed, such as the strengthening of direct and indirect mechanisms of moisture flux transport associated with global warming, low-level atmospheric circulation changes and/or to SSTs mean condition long-term variations over tropical and subtropical South Atlantic and South Pacific oceans.  相似文献   

18.
August Sea Surface Temperatures (aSSTs) based on fossil diatom assemblages are generated with 2?year average resolution from a 230-year-long sediment core (Rapid 21-12B), from the Reykjanes Ridge in the subpolar North Atlantic. The results indicate a warming trend of ~0.5°C of the surface waters at the Reykjanes Ridge for the last 230?years. Superimposed on this warming trend there is a multidecadal to decadal aSST variability of up to 1°C. The interval from the 1770s to the 1830s represents the coldest period, whereas ~1860?C1880 represents the warmest period during the last 230?years. The last 25?years is characterized by a warming trend showing strong decadal aSST variability with several warm years, but also the coldest years since the 1820s. The time of these cold years in the mid-1970s, -1980s and -1990s correspond with the documented great salinity anomalies (GSA) in the North Atlantic suggesting increased fluxes of cold, low-salinity waters from the Arctic during the last decades. The aSST record and the August North Atlantic Oscillation (aNAO) index show similar multidecadal-scale variability indicating a close coupling between the oceanic and atmospheric patterns. The aSST record shows a negative correlation with the aNAO indicating cold aSST during the positive aNAO trend and vice versa. Results suggest that the wind driven variation in volume fluxes of the North Atlantic surface waters could be the major mechanism behind the observed relationship.  相似文献   

19.
The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.  相似文献   

20.
Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736–2000, dry–wet index data for A.D. 500–2000, and a 1000-yr control simulation using the Community Earth System Model with fixed pre-industrial external forcing, the decadal variability of summer precipitation over eastern China is studied. Power spectrum analysis shows that the dominant cycles for the decadal variation of summer precipitation are: 22–24 and quasi-70 yr over the North China Plain; 32–36, 44–48, and quasi-70 yr in the Jiang–Huai area; and 32–36 and 44–48 yr in the Jiang–Nan area. Bandpass decomposition from observation, reconstruction, and simulation reveals that the variability of summer precipitation over the North China Plain, Jiang–Huai area, and Jiang–Nan area, at scales of 20–35, 35–50, and 50–80 yr, is not consistent across the entire millennium. We also find that the warm (cold) phase of the Pacific Decadal Oscillation generally corresponds to dry (wet) conditions over the North China Plain, but wet (dry) conditions in the Jiang–Nan area, from A.D. 1800, when the PDO became strengthened. However, such a correspondence does not exist throughout the entire last millennium. Data–model comparison suggests that these decadal oscillations and their temporal evolution over eastern China, including the decadal shifts in the spatial pattern of the precipitation anomaly observed in the late 1970s, early 1990s, and early 2000s, might result from internal variability of the climate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号