首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
近海热带气旋强度突变的垂直结构特征分析   总被引:6,自引:3,他引:6       下载免费PDF全文
应用1949~2003年共55年的《台风年鉴》和《热带气旋年鉴》资料以及NCEP/NCAR再分析资料, 给出热带气旋强度突变标准, 对中国近海突然增强和突然减弱的两组热带气旋进行合成分析和对比分析。结果表明, 近海热带气旋强度变化与南亚高压、 副热带高压的强度变化呈反相变化关系; 环境风垂直切变小于5 m/s是南海近海热带气旋突然增强的必要条件, 热带气旋强度突变对环境风垂直切变变化的响应时间为18~36 h; 热带气旋中心附近存在数值在 -6~6 m/s之间纬向分布的环境风垂直切变密集带, 在热带气旋突然增强时刻, 中心附近环境风垂直切变经向梯度最大; 风垂直切变在热带气旋突然增强过程中逐渐减弱, 而在热带气旋突然减弱过程中逐渐增强; 热带气旋中心附近是高低层相对涡度垂直切变的强负值区, 在热带气旋突然增强过程中相对涡度垂直切变逐渐减小, 在突然增强时刻最小。  相似文献   

2.
陈国民  沈新勇  杨宇红 《高原气象》2010,29(6):1474-1484
利用一个完全可压、非静力及原始方程热带气旋模式(TCM4),通过对f平面和β平面中不同强度的垂直风切变下理想热带气旋的模拟,研究了β效应和垂直风切变对热带气旋强度和结构的影响。结果表明:(1)理想气旋植入相对较弱的垂直风切变之后其强度最终将会进入一种近似常定状态,通过研究这种准常定状态对切变强度的敏感性发现,研究垂直风切变对理想气旋影响,应该讨论理想气旋能否维持在一个特定强度(台风、热带风暴及热带低压等)的极限垂直切变,而不是去讨论决定理想气旋将减弱还是增强的极限垂直风切变值;(2)在f平面下,由于垂直风切变造成涡度平流随高度变化,使得在顺切变前部以及左侧边界层附近产生辐合,伴随着空气的气旋式螺旋上升,外流层对应区域产生辐散,从而使得强对流和强降水发生在顺切变左侧。(3)行星涡度梯度(β效应)也能使涡旋产生一定的非对称性。当考虑β效应和垂直风切变的双重叠加效应时,所产生的非对称性比单纯由β效应或垂直风切变产生的非对称性更大,并且强对流区主要集中在顺切变左前部。(4)热带气旋眼墙替换过程或许可以被预测,因为它们似乎与β效应和环境流(VWS)存在联系。  相似文献   

3.
热带气旋温湿非对称结构的比较研究   总被引:1,自引:0,他引:1  
利用NCEP的CFSR 0.5 °再分析资料和日本东京台风中心的最佳路径集,对西北太平洋和南海海域1979—2010年间的热带气旋温湿水平非对称和垂直非均匀结构等进行了合成和对比分析。(1) 热带气旋流场的非对称随着气旋增强逐渐趋于轴对称化,而外包区及外围区比湿场的非对称性逐渐增强。(2) 热带气旋普遍具有“双暖心”的垂直非均匀分布结构特征;弱热带气旋的低层暖心相对较强而TY及以上强度的热带气旋高层暖心相对较强。(3) “暖心”的水平范围和形态随气旋的增强而扩大并更趋于轴对称,200 hPa高度场上较弱的热带气旋暖心附近为弱高压中心、较强热带气旋暖心附近为一低压中心。(4) 热带气旋的“湿心”主要位于700~850 hPa的低层,湿心强度随着气旋强度等级增加而增强,0.8 g/kg的比湿距平范围随TC强度增强而不断向高层延伸。(5) 气旋不同区域的各个层次假相当位温随气旋增强而增加,且各个强度级别的气旋不同区域增温速率均为内核区最大、外包区次之和外围区最小。   相似文献   

4.
利用NCEP GDAS/FNL再分析数据,根据TFP(Thermal Front Parameter)参数和锋生函数,对1909号热带气旋“利奇马”生命史中各主要阶段暖心特征和变性过程进行了诊断分析。结果表明:“利奇马”强度为热带风暴时,其暖心结构较为松散,500 hPa以上和600 hPa以下分别存在一个最强中心,在强度减弱阶段上下层暖心均偏离气旋中心;当其强度升至强热带风暴及以上级别时,低层暖心消失,高层暖心显著增强,结构变得紧凑,气旋中心上空暖区呈棒槌状分布。高层暖心强度与“利奇马”强度呈正相关,当“利奇马”维持超强台风时,其暖心可达10~14℃。“利奇马”与中纬度西风槽接触后,冷空气开始自对流层中低层进入其环流,低层冷空气入侵的程度比中层更明显;低层暖心被冷空气侵蚀而消失,高层暖心则逐渐减弱,结构亦变得松散。TFP参数和锋生函数计算结果表明受冷空气影响,“利奇马”斜压性逐渐增强,其中心西北侧形成一支暖锋,逐渐变性为温带气旋,但冷锋未见发展。变性过程中“利奇马”高层暖心强度虽减弱但仍然维持,但低层暖区被冷空气完全填塞,导致其变性后较快消亡。  相似文献   

5.
利用非静力中尺度WRF模式模拟的台风Chanchu(0601)的输出资料,探讨了Chanchu减弱变性过程的强度及结构变化。分析结果表明:在台风Chanchu北移过程中,高层的暖心被破坏,强度快速减弱,眼壁对流发展高度降低,眼壁对流由对称结构演变为非对称,内核对流减弱。此减弱变性过程与惯性稳定度减小、垂直风切变增强、低层锋生等环境要素有关。惯性稳定度与台风强度变化一致,随着惯性稳定度降低,最大切向风减弱并不断外扩,Rossby变形半径增大从而潜热释放不集中难以维持台风强度,台风减弱;同时,内核区的高层暖心更易径向频散,从而高层暖心难以维持;环境的垂直风切变增强使台风的斜压性增强,台风垂直结构的倾斜度增大,对流发展高度降低;低层冷空气侵入台风中心趋于填塞,也利于台风强度减弱;台风登陆以后冷暖空气对比导致的锋生使得不稳定能量释放从而重新加强了Chanchu环流内的中低层对流活动,但较台风最强时刻而言对流强度减弱。总体减少的对流和降低的对流高度,导致潜热能释放减小,其向心输送也减少,不足以维持强暖心结构,最终使得台风减弱并变性。   相似文献   

6.
中国近海热带气旋强度突变的热力特征   总被引:2,自引:0,他引:2  
应用2000 2006年的NCEP/NCAR再分析资料,通过合成分析和对比分析,利用全型垂直涡度倾向方程,研究中国近海热带气旋强度突变的热力特征.结果表明:(1)突然增强热带气旋在其中心附近对流层高低层均存在视热源Q1的极大值中心,低层Q1在突然增强过程中越来越强;而突然减弱热带气旋在中心附近对流层中层存在Q1的极大值中心,而且在突然减弱过程中Q1越来越弱.视水汽汇Q2的极值中心在热带气旋强度变化过程中位于对流层中层,在突然增强过程中有所增大,而在突然减弱过程中有所减小.(2)Q1的峰值高度在热带气旋突然增强和突然减弱过程中分别位于对流层高层和中层.Q2的峰值高度在热带气旋突然增强过程中不断抬升,而在突然减弱过程中不断降低,这说明积云对流的垂直输送在热带气旋突然增强过程中起到一定作用.(3)热带气旋中心附近对流层中上层非绝热加热随着高度增加、对流层低层垂直非均匀加热的增大有利于热带气旋的突然增强,反之导致热带气旋突然减弱.  相似文献   

7.
沈阳  张大林  沈新勇 《气象学报》2012,70(5):949-960
利用大西洋飓风波尼(1998)的MM5模拟资料(格点距4 km),对在风的垂直切变影响下,波尼的结构和强度变化进行了分析.在风的垂直切变影响下,波尼的垂直速度和降水场表现出了明显的1波非对称结构,这种结构与风的垂直切变的强度呈正比;逆切变一侧9-12 km高度上通风作用强烈,在破坏波尼暖心的同时,也导致了边界层中低相当位温对波尼核心的入侵,与低层通风路径相比,中层通风对波尼的破坏作用更甚,鉴于在分析时间段内,波尼所经海域平均海温变化不大,可以认为风的垂直切变主导了波尼强度变化;对波尼强度突变现象的分析发现,强度突变源于通风破坏作用的积累,当边界层中低相当位温侵入热带气旋中心的程度超过某一阈值时,气旋强度会突然减弱;其结果显示风的垂直切变造成的动力和热力效应对热带气旋强度的影响都十分重要,而后者更为直接.  相似文献   

8.
垂直风切变对热带气旋强度及结构的影响   总被引:5,自引:0,他引:5  
利用一个非静力、原始方程热带气旋模式(TCM4),通过对f平面不同强度的垂直风切变下理想热带气旋的模拟后发现:29.15°C的海温下理想热带气旋最大可能强度(MPI)接近910hPa,近中心最大风力可达到76 m·s-1左右。在理想条件下,能抑制热带气旋强度甚至减弱的垂直风切变临界值在8~10m·s-1。由于切变造成涡度平流随高度变化,使得在顺切变前部以及左侧边界层附近产生辐合,伴随着空气的气旋式螺旋上升,外流层对应区域产生辐散,从而使得强对流和强降水发生在顺切变左侧。  相似文献   

9.
热带气旋强度变化研究进展   总被引:68,自引:10,他引:68       下载免费PDF全文
端义宏  余晖  伍荣生 《气象学报》2005,63(5):636-645
自20世纪90年代后期以来,热带气旋强度变化研究越来越受到人们的重视,随着研究的不断深入,热带气旋强度变化研究取得了可喜的进展,文中总结近年来热带气旋强度变化的主要研究成果,主要包括(1)热带气旋的发生、发展和最大可能强度的研究;(2)行星涡度梯度、环境均匀流、环境流场垂直切变以及热带气旋外流与环境流的相互作用对热带气旋强度的影响及物理机制;(3)热带气旋结构与强度的变化关系,着重总结环境流场导致的非对称结构变化而引起的热带气旋强度变化以及对涡旋倾斜发展理论验证,分析了涡旋Rossby波的最新研究;(4)海洋热状况变化以及海洋飞沫对热带气旋强度的影响研究成果。分析指出,今后进一步开展用现代化卫星探测资料研究热带气旋强度变化外,还应加强热带气旋外流与环境流场的相互作用,海-气交界面的参数化问题,热带气旋结构变化与TC强度变化关系以及这种关系的物理本质的研究,通过深入研究,认识热带气旋强度变化的物理机制,提高热带气旋强度变化的预报能力。  相似文献   

10.
于玉斌  郑祖光 《大气科学》2010,34(4):669-680
应用非线性动力系统的研究方法, 基于NCEP/NCAR再分析资料, 以超强台风 “桑美” (2006) 在我国近海的突然增强和突然减弱过程为例, 从动能角度分析热带气旋能量发展的条件, 将分析结果转化为可用于分析预测热带气旋强度变化的实用指标, 如非热成风涡度、 热成风偏差及其垂直变化。结果表明: 热带气旋中心附近存在非热成风涡度负值中心, 有利于近海热带气旋突然增强; 非热成风涡度的变化与热带气旋中心气压变化有较好的一致性。当扰动自下向上传播时, 在热带气旋增强阶段热成风偏差为正值, 而在减弱阶段为负值; 当外围波扰向内核传播时, 在热带气旋增强阶段热成风偏差垂直变化为负值, 而在减弱阶段为正值, 热成风偏差及其垂直变化的这种变化在对流层中低层更明显。当扰动自下向上、 自外围向内核传播时, 在热带气旋增强阶段非热成风涡度为负值、 热成风偏差为正值、 热成风偏差垂直变化为负值; 减弱阶段则相反。  相似文献   

11.
利用AMSU分析热带气旋结构特征   总被引:3,自引:0,他引:3       下载免费PDF全文
搭载在美国新一代极轨业务系列气象卫星上的先进的微波探测器 (Advanced Microwave Sounding Unit , AMSU) 提供了对于大气中温度、湿度以及云雨分布特征的探测能力。 研究选择 2003 年发生在西北太平洋上的多个热带气旋个例, 利用 NOAA16/17 卫星的 AMSU 数据分析热带气旋热力及云雨结构特征, 结果显示: 热带气旋中心的增暖在 AMSU-A 微波温度观测表现显著, 特别是在对流层上层通道尤其明显; AMSU 观测热带气旋中心增暖与强度相关性统计分析显示, 两者相关性达 0.778; AMSU-B 高频通道可以揭示热带气旋的云雨结构分布和对流发展旺盛情况, 分析显示热带气旋云雨结构变化与气旋强度密切相关, 气旋强度滞后于系统对流过程的发展 。  相似文献   

12.
In this paper the impacts of vertical resolution on the simulations of Typhoon Talim (2005) are examined using the Weather Research and Forecasting (WRF) model, with cumulus parameterization scheme representing the cumulus convection implicitly. It is shown that the tropical cyclone (TC) track has little sensitivity to vertical resolution, whereas the TC intensity and structure are highly sensitive to vertical resolution. It is partly determined by the sensitivity of the planetary boundary layer (and the surface layer) and the cumulus convection processes to vertical resolution. Increasing vertical resolution in the lower layer could strengthen the TC effectively. Increasing vertical resolution in the upper layer is also beneficial for the storm intensification, but to a lesser degree. In contrast, improving the midlevel resolution may cause the convergence of environmental air, which inhibits the TC intensification. The results also show that the impacts of vertical resolution on features of the TC structure, such as the tangential winds, secondary circulations and the evolution of the warm-core structure, are consistent with the impacts on the TC intensity. It is suggested that in the simulations of TCs, the vertical levels should be distributed properly rather than the more the better, with higher vertical resolution being expected both in the lower and upper layer, while the middle layer should not hold too many levels.  相似文献   

13.
Based on NCEP/CFSR 0.5° reanalysis data and the best track data from the Japan Tokyo Typhoon Center,composite and comparative analyses demonstrate the asymmetrical structures of the temperature and humidity in tropical cyclones over the Western North Pacific and the South China Sea from 1979 to 2010.The results are shown as follows.(1) With intensifying tropical cyclones,the flow field tends to become gradually more axisymmetric;however,the asymmetry of the specific humidity in the outer regions is more obvious.(2) In general,tropical cyclones have a non-uniform,vertical, "double warm-core" structure.The "warm-cores" in the lower level of weak tropical cyclones and in the higher level of strong tropical cyclones are the stronger of the two.(3) The distribution area of a "warm-core" is enhanced with cyclone intensification and tends to become more axisymmetric.At 200 hPa,the "warm-core" of a weak cyclone has a weak anticyclone in the center,whereas that of a strong cyclone has a weak cyclone in the center.(4)The "wet-core" of a tropical cyclone is primarily located in the lower level(700-850 hPa).With the cyclone's intensification,the intensity of the "wet-core" increases and the scope of the 0.8 g kg~(-1) specific humidity anomaly tends to expand to higher levels.(5) With the cyclone's deepening,the pseudo-equivalent potential temperature at different levels in different regions increases.In addition,the largest warming rates at each intensity level in the different regions occur in the core area,followed in turn by the envelope and outer areas.  相似文献   

14.
热带气旋"黄蜂"动热力特征演变的模拟分析   总被引:9,自引:1,他引:8  
以"中国登陆台风试验"项目的目标热带气旋"黄蜂"为对象,用高分辨数值模式成功模拟了其近海加强和登陆减弱的过程,从定量和时间演化角度细致分析了热带气旋(TC)各阶段的动、热力特征,包括对流加热特性、温湿结构、稳定度、涡散度、垂直运动、垂直环流、水平环流等基本动、热力因子的时空结构特征,揭示了该热带气旋的大量结构特点,如对流加热的强盛和非对称性、强热带风暴的无眼结构、低层的东暖西冷结构、涡度的准圆形对称结构、东/西侧环流正/斜压性的差异、低层辐合和上升运动的准周期振荡等等.这些结构特征的揭示对深入细致地研究和认识南海热带气旋的特点和演变机理具有重要学术意义.  相似文献   

15.
The linear regression and horizontally stepwise correction are conducted on the observational data from AMSU-A L1 B of NOAA polar orbit satellite to invert a 40-layers(from 1,000 h Pa to 0.1 h Pa) dataset of atmospheric temperature with a horizontal resolution of 0.5°×0.5° after the correction of satellite antenna pattern and limb adjustment. Case study shows that the inversion data of temperature can reveal the detail structure of warm core in tropical cyclone. We choose two categories of tropical depressions(TDs) over the South China Sea, including the non-developing TDs and developing TDs. Both of them are developed downward from the middle and upper level to the lower level. Comparison between the evolutions of warm core in the two categories of TDs indicates that the warm core is developed downward from the middle and upper troposphere to the sea surface in all the downward-developing TDs. The difference is that in the group of further developing TDs, the warm core in the upper troposphere is intensified suddenly when it is extending to the sea surface. The warm core in the upper and lower troposphere is strengthened in a meantime. But the similar feature is not observed in the non-developing TDs. Then it may be helpful to judge the TD development by monitoring the change in its warm-core structure.  相似文献   

16.
利用风云三号B星(FY-3B)微波成像仪(Microwave Radiation Imager,MWRI)一级亮温数据和每6 h一次的热带气旋(tropical cyclone, TC)最佳路径数据进行时空匹配,建立了TC微波亮温数据集。该数据集包含了2011—2016年全球六大海盆生成的热带风暴级别以上的TC共计538个,以及对应每个TC的微波十通道亮温和36.50 GHz、89.00 GHz的极化校正亮温度,并简要阐明了该数据集在热带气旋研究方面的潜在应用,尤其对TC生命周期内的微波亮温特征及TC强度变化研究提供了有力的数据支撑。  相似文献   

17.
The Weather Research and Forecasting (WRF-ARW) model and its three-dimensional variational data assimilation (3D-Var) system are used to investigate the impact of the Advanced Microwave Sounding Unit-A (AMSU-A) radiances on the prediction of Indian Ocean tropical cyclones. Three tropical cyclones are selected for this study: cyclone Mala (April 2006; Bay of Bengal), cyclone Gonu (June 2007; Arabian Sea), and cyclone Sidr (November 2007; Bay of Bengal). For each case, observing system experiments are designed, by producing two sets of analyses from which forecasts are initialized. Both sets of analyses contain all conventional and satellite observations operationally used, including, but not limited to, Quick Scatterometer (QuikSCAT) surface winds, Special Sensor Microwave/Imager (SSM/I) surface winds, Meteosat-derived atmospheric motion vectors (AMVs), and differ only in the exclusion (CNT) or inclusion (EXP) of AMSU-A radiances. Results show that the assimilation of AMSU-A radiances changes the large-scale thermodynamic structure of the atmosphere, and also produce a stronger warm core. These changes cause large forecast track improvements. In particular, without AMSU-A assimilation, most forecasts do not produce landfall. On the contrary, the forecasts initialized from improved EXP analyses in which AMSU-A data are included produce realistic landfall. In addition, intensity forecast is also improved. Even if the analyzed cyclone intensity is not affected by the assimilation of AMSU-A radiances, the predicted intensity improves substantially because of the development of warm cores which, through creation of stronger gradients, helps the model in producing intense low centre pressure.  相似文献   

18.
Using tropical cyclone (TC) best track and intensity of the western North Pacific data from the Joint TyphoonWarning Center (JTWC) of the United States and the NCEP/NCAR reanalysis data for the period of 1992-2002, the effects of vertical wind shear on TC intensity are examined. The samples were limited to the westward or northwestward moving TCs between 5°N and 20°N in order to minimize thermodynamic effects. It is found that the effect of vertical wind shear between 200 and 500 hPa on TC intensity change is larger than that of the shear between 500 and 850 hPa, while similar to that of the shear between 200 and 850 hPa. Vertical wind shear may have a threshold value, which tends to decrease as TC intensifies. As the intensifying rate of TC weakens, the average shear increases. The large shear has the obvious trend of inhibiting TC development. The average shear of TC which can develop into typhoon (tropical depression or tropical storm) is below 7 m s-1 (above 8 m s-1).  相似文献   

19.
国内外热带气旋强度变化研究现状   总被引:1,自引:1,他引:1  
影响热带气旋强度变化的因子大致可以分为3类:环境气流与热带气旋环流的相互作用,下垫面与热带气旋环流的相互作用,热带气旋本身的内部结构变化。通过查阅近年来国内外相关文献,对热带气旋强度变化的研究进展进行了论述,为热带气旋强度研究提供参考。  相似文献   

20.
Sensitivity of the warm core of tropical cyclones to solar radiation   总被引:1,自引:0,他引:1  
To investigate the impacts of solar radiation on tropical cyclone (TC) warm-core structure (i.e., the magnitude and height), a pair of idealized simulations are conducted by specifying different strengths of solar shortwave radiation. It is found that the TC warm core is highly sensitive to the shortwave radiative effect. For the nighttime storm, a tendency for a more intense warm core is found, with an elevated height compared to its daytime counterpart. As pointed out by previous studies, the radiative cooling during nighttime destabilizes the local and large-scale environment and thus promotes deep moist convection, which enhances the TC's intensity. Due to the different inertial stabilities, the diabatic heating in the eyewall will force different secondary circulations. For a strong TC with a deeper vertical structure, this promotes a thin upper-level inflow layer. This inflow carries the lower stratospheric air with high potential temperature and descends adiabatically in the eye, resulting in significant upper-level warming. The Sawyer-Eliassen diagnosis further confirms that the height of the maximum temperature anomaly is likely attributable to the balance among the forced secondary circulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号