首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We examined stable carbon and nitrogen isotopic signatures of 17 fish and 16 invertebrate taxa common to the Newfoundland and Labrador (NL) continental shelf food web. Particular sampling emphasis was placed on Atlantic cod (Gadus morhua) and related prey species (e.g. shrimp, Pandalus borealis, and capelin, Mallotus villosus). We found highly significant (p < 0.0001) differences between near-shore (bays) and offshore (shelf edge) δ15N signatures for cod, ‘other fish’ (pooled) and invertebrates (pooled). In contrast, there were only minor differences in δ13C signatures of ‘other fish’ (p < 0.05) and no difference for cod and invertebrates among the two habitats. We sampled at two times of the year (January and June) and found no systematic effect of season on both δ13C and δ15N in cod, ‘other fish’ and invertebrates. We calculated isotopic fractionation factors for cod from the entire shelf (mixed diet) and for cod with diets composed mainly of capelin or shrimp. These values ranged between 2.2‰ and 3.9‰ for δ15N and −0.4‰ and 0.8‰ for δ13C and, for δ15N, may reflect diet-related differences in bioenergetic status. We discuss potential mechanisms for near-shore versus offshore enrichment of δ15N signatures, and demonstrate the implications of this spatial variation on δ15N-derived trophic position estimates.  相似文献   

3.
A simple numerical model, based on the Reynolds stress equations and kε turbulence closure scheme, is developed for the coastal wave and current bottom boundary layer. The current friction velocity is introduced to account for the effect of currents on waves. The implicit Crank–Nicolson finite difference method discretizes the governing equations. Vertical changing step grids with the constant ratio for two adjacent spatial steps are used together with the equal time steps in the modeling. Vertical profiles of mean current velocity and wave velocity amplitude are obtained. These modeled results are compared with the laboratory experimental data of Van Doorn [1981. Experimental investigation of near bottom velocities in water waves with and without a current. Report M1423, Delft Hydraulics Laboratory, Delft, The Netherlands; 1982. Experimenteel onderzoek naar het snelheidsveld in de turbulente bodemgrenslaag in een oscillerende stroming in een golftunnel. Report M1562, Delft Hydraulics Laboratory, Delft, The Netherlands]. It has been shown that modeled and observed (Van Doorn, T., 1981. Experimental investigation of near bottom velocities in water waves with and without a current. Report M1423, Delft Hydraulics Laboratory, Delft, The Netherlands; 1982. Experimenteel onderzoek naar het snelheidsveld in de turbulente bodemgrenslaag in een oscillerende stroming in een golftunnel. Report M1562, Delft Hydraulics Laboratory, Delft, The Netherlands) mean velocity profiles within the wave and current bottom boundary layer are in better agreement than outside. Modeled and observed (Van Doorn, T., 1981. Experimental investigation of near bottom velocities in water waves with and without a current. Report M1423, Delft Hydraulics Laboratory, Delft, The Netherlands) wave velocity amplitude profiles within the wave and current bottom boundary layer are in better agreement than outside. Modeled wave velocity amplitudes are in good agreement with the laboratory experimental data of Van Doorn [1982. Experimenteel onderzoek naar het snelheidsveld in de turbulente bodemgrenslaag in een oscillerende stroming in een golftunnel. Report M1562, Delft Hydraulics Laboratory, Delft, The Netherlands].  相似文献   

4.
A C25 highly branched isoprenoid (HBI) monoene hydrocarbon, designated IP25, has been proposed previously to originate from diatoms living in Arctic sea ice, while the presence of IP25 in sediments has been suggested to be a proxy for the occurrence of former Arctic sea ice. Here, we show that the 13C isotopic composition of IP25 in sea ice, in sediment trap material collected under sea ice, and in high latitude northern sediments, is distinctive (isotopically ‘heavy’) and distinguishable from that of organic matter of planktonic or terrigenous origin. Mean δ13C values for IP25 were − 22.3 ± 0.4‰ (sea ice), − 19.6 ± 1.1‰ (sediment traps) and − 19.3 ± 2.3‰ (sediments). These measurements, therefore, support further the proposed use of IP25 as an Arctic sea ice proxy.  相似文献   

5.
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m− 2 d− 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after  30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L− 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m− 2 d− 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

6.
High-resolution acoustic and ichtyoplankton sampling with a ‘continuous under-way fish egg sampler (CUFES)’ was performed in two regions of approximately 100 square nautical miles off southern Iberian Peninsula, with the aim of studying the small scale distribution of sardine (Sardina pilchardus) adults and eggs during a spawning event. Very dense patches (246 eggs m− 3) of recently spawned eggs with dimensions (up to 3 nautical miles wide) significantly larger than daytime sardine schools were present in both regions. Egg staging and ageing showed very little intra-sample variation, indicating a synchronous spawning period at dusk. The internal structure of the patches evaluated by variography showed very low internal variability, as if they consisted of a single unit. This hypothesis is confirmed by the acoustic finding of large sardine shoals with similar dimensions to those of the patches after sunset and throughout the night. During that period, adults were found near or in contact with the bottom, suggesting that spawning occurred at depth. A distinct patch of older eggs was found in both areas, but with a few nautical miles of horizontal separation. Their characteristics (a larger area, lower egg densities and a more irregular shape) indicate that these patches were exposed to dispersion and ‘stirring’ by physical forces, reshaping their initial appearance, while mesoscale water circulation could have displaced the core of the patches away by several kilometres within a day.  相似文献   

7.
A video-based technique for mapping intertidal beach bathymetry   总被引:2,自引:0,他引:2  
Measuring the location of the shoreline and monitoring foreshore changes through time are core tasks carried out by coastal engineers for a wide range of research, monitoring and design applications. With the advent of digital imaging technology, shore-based video systems provide continuous and automated data collection, encompassing a much greater range of time and spatial scales than were previously possible using field survey methods.A new video-based technique is presented that utilises full-colour image information, which overcomes problems associated with previous grey-scale methods, which work well at steep (reflective) sites, but are less successful at flatter (dissipative) sites. Identification of the shoreline feature is achieved by the automated clustering of sub-aqueous and sub-aerial pixels in ‘Hue–Saturation–Value’ (HSV) colour space, and applying an objective discriminator function to define their boundary (i.e., ‘shoreline’) within a time-series of consecutive geo-referenced images. The elevation corresponding to the detected shoreline features is calculated on the basis of concurrent tide and wave information, which is incorporated in a model that combines the effects of wave set-up and swash, at both incident and infragravity frequencies.Validation of the technique is achieved by comparison with DGPS survey results, to assess the accuracy of the detection and elevation methods both separately and together. The uncertainties associated with the two sub-components of the model tend to compensate for each other. The mean difference between image-based and surveyed shoreline elevations was less than 15 cm along 85% of the 2-km study region, which corresponded to an horizontal offset of 6 m. The application of the intertidal bathymetry mapping technique in support of CZM objectives is briefly illustrated at two sites in The Netherlands and Australia.  相似文献   

8.
Plant-flow interactions on the surface of tidal wetlands result in flow characteristics that are profoundly different from non-vegetated flows. Reductions in mean flow velocity and turbulence, especially the vertical components, limit vertical mixing and may impact a wide range of processes including geochemical exchanges at the sediment water interface, larval recruitment and dispersion, and sediment deposition and retention. The goal of this paper is to quantify horizontal and vertical components of velocity, turbulence intensity and total turbulent kinetic energy in Spartina alterniflora canopies in southeastern North Carolina and to relate flow characteristics to particulate transport on the marsh surface. Another aim of this paper is to assess the extent to which the distribution of standing biomass affects mean flow and turbulence by comparing S. alterniflora data to other canopy types and through a series of canopy manipulations which altered canopy height and stem densities.The results of this study indicate that flow velocity, turbulence intensity, and total turbulent kinetic energy (TKE) are significantly reduced within the vegetated canopy and that this reduction is inversely related to the amount of biomass present in the water column. Within the canopy, approximately 50% of the initial mean velocity and TKE is reduced within 5 m of the canopy edge. Within the canopy, mean velocity and TKEhoriz usually exceeded vertical velocity or TKEvert and the vertical components of flow were attenuated more strongly than the horizontal. These results suggest that within the vegetation, turbulence contributes more to lateral advection than to vertical mixing. As a result, total suspended solid concentrations were shown to decrease logarithmically with distance from the canopy edge and to decrease at a faster rate in more densely vegetated regions of the canopy (i.e. lower TKEvert) as compared to areas of sparser vegetation (i.e. higher TKEvert).  相似文献   

9.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

10.
Understanding the physical and biogeochemical processes that control the exchange of biogenic carbon within and between the arctic shelves, slopes, and deep basins is a key objective of the Western Arctic Shelf-Basin Interaction program (SBI). Here, egg production (EP) of the dominant copepod Calanus glacialis/marshallae was used as an indicator of food limitation for the mesozooplankton community in the Chukchi and Beaufort Seas in spring and summer, 2002. Both C. glacialis and C. marshallae may occur in this region but the two cannot easily be differentiated visually. Four oceanographic regions were objectively identified that roughly corresponded to the different pathways in circulation of nutrient-rich Pacific water. A ‘transition’ region characterized by ‘older’ Pacific water was located at the shelfbreak and separated the nutrient-rich shelf water and the low-nutrient waters of the deep basin. The observed spatial pattern in EP in C. glacialis/marshallae in spring and summer resulted both from the different water mass environments and from the reproductive cycle of the species. EP was greater on the shelf than in the basin, corresponding to differences in body size and nitrogen condition factor (NCF) in females, while the egg viability was generally high throughout the study area. EP showed no relationship with low-chlorophyll a biomass under heavy ice-cover in spring, while a significant relationship was observed in the more open water in summer. Adult female carbon condition factor (CCF) was much higher in summer, reflecting the accumulation of lipids during the growth season. Small animals with a markedly greater NCF dominated on the shelf. The shelfbreak region contained a mixture of females from the shelf and the basin with intermediate sizes, conditions, and EP rates. The occurrence of water typical of the ‘transition’ shelfbreak region and elevated EP in C. glacialis/marshallae offshore on the Barrow Canyon and East Barrow sections indicated offshore transport of productive shelf water and the associated plankton community. The input of nutrient-rich Pacific water and accompanying elevated production to the northern Chukchi Sea and the Chukchi-Beaufort shelfbreak region may contribute to the reproductive success of C. glacialis/marshallae in this region.  相似文献   

11.
Novel laboratory experiments and numerical modelling have been performed to study the advection scales of suspended sediment in the swash zone. An experiment was designed specifically to measure only the sediment picked up seaward of the swash zone and during bore collapse. The advection scales and settling of this sediment were measured during the uprush along a rigid sediment-free beach face by a sediment trap located at varying cross-shore positions. Measurements were made using a number of repeated solitary broken waves or bores. Approximately 25% of the pre-suspended sediment picked up by the bores reaches the mid-swash zone (50% of the horizontal run-up distance), indicating the importance of the sediment advection in the lower swash zone. The pre-suspended sediment is sourced from a region seaward of the shoreline (still water line) which has a width of about 20% of the run-up distance. An Eulerian–Lagrangian numerical model is used to model the advection scales of the suspended sediment. The model resolves the hydrodynamics by solving the non-linear shallow water equations in an Eulerian framework and then solves the advection–diffusion equation for turbulence and suspended sediment in a Lagrangian framework. The model provides good estimates of the measured mass and distribution of sediment advected up the beach face. The results suggest that the correct modelling of turbulence generation prior to and during bore collapse and the advection of the turbulent kinetic energy into the lower swash is important in resolving the contribution of pre-suspended sediment to the net sediment transport in the swash zone.  相似文献   

12.
Waves, topographic features and material properties are known as the most important factors affecting the sediment movement and coastal profiles. In this study, considering wave height (H=6.5, 17, 16, 20, 23, 26 and 30 cm) and period (T=1.46 and 2.03 s), bed slope (m=1/10, 1/15 and 1/25) and sediment diameter (d50=0.18, 0.26, 0.33 and 0.40 mm), cross-shore sediment movement was investigated using a physical model and various offshore bar geometric parameters were determined by the resultant erosion profile. The offshore bar geometric characteristics are the distance between the bar crest and the shoreline, the depth from bar crest to the still-water level, the distance between the equilibrium point and the shoreline, the distance between the closure point and the shoreline, and the bar volume. Dimensional and non-dimensional equations were obtained by using non-linear regression methods through the experimental data and compared with those of previously developed equations. The results have indicated that the proposed equations fit to experimental data better than previously developed equations.  相似文献   

13.
Change of shoreline wave climate caused by the installation of a wave farm is assessed using the SWAN wave model. The 30 MW-rated wave farm is called the ‘Wave Hub’ and will be located 20 km off the north coast of Cornwall, UK. Changes in significant wave height and mean wave period due to the presence of the Wave Hub are presented. The results suggest that the shoreline wave climate will be affected, although the magnitude of effects decreases linearly as wave energy transmitted increases. At probable wave energy transmission levels, the predicted change in shoreline wave climate is small.  相似文献   

14.
Modeling of the Turbulence in the Water Column under Breaking Wind Waves   总被引:1,自引:0,他引:1  
Past studies have shown that there is a wave-enhanced, near-surface mixed-layer in which the dissipation rate is greater than that derived from the “law of the wall”. In this study, turbulence in water columns under wind breaking waves is investigated numerically and analytically. Improved estimations of dissipation rate are parameterized as surface source of turbulent kinetic energy (TKE) for a more accurate modelling of vertical profile of velocity and TKE in the water column. The simulation results have been compared with the experimental results obtained by Cheung and Street (1988) and Kitaigorodskii et al. (1983), with good agreement. The results show that the numerical full model can well simulate the near-surface wave-enhanced layer and suggest that the vertical diffusive coefficients are highly empirical and related to the TKE diffusion, the shear production and the dissipation. Analytical solutions of TKE are also derived for near surface layer and in deep water respectively. Near the surface layer, the dissipation rate is assumed to be balanced by the TKE diffusion to obtain the analytical solution; however, the balance between the dissipation and the shear production is applied at the deep layer. The analytical results in various layers are compared with that of the full numerical model, which confirms that the wave-enhanced layer near the surface is a diffusion-dominated region. The influence of the wave energy factor is also examined, which increases the surface TKE flux with the wave development. Under this region, the water behavior transits to satisfy the classic law of the wall. Below the transition depth, the shear production dominantly balances the dissipation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

16.
Quasi-synoptic observations of the horizontal and vertical structure of a cold-core cyclonic mesoscale eddy feature (Cyclone Noah) were conducted in the lee of Hawai’i from November 4–22, 2004 as part of the E-Flux interdisciplinary collaborative research program. Cyclone Noah appears to have spun up to the southwest of the ‘Alenuihaha Channel (between Maui and Hawai’i) as a result of strong and persistent northeasterly trade winds through the channel. Shipboard hydrographic surveys 2.5 months later suggest that Noah weakened and was in a hypothesized spin-down phase of its life cycle. Although the initial surface expression of Noah was limited in scale to 40 km in diameter and, as evidenced by surface temperatures, 2–3 °C cooler than the surrounding waters, depth profiles revealed a fully developed semi-elliptical shallow feature (200 m), 144 km long and 90 km wide (based on sigma-t=23 kg m−3) with tangential speeds of 40–80 cm s−1, and substantial isopycnal doming. Potential vorticity distribution of Noah suggests that radial horizontal flow of the core water was inhibited from the surface to depths of 75 m, with high vorticity confined above the sigma-t=23.5 kg m−3 isopycnal surface. Upward displacements of isopycnal surfaces in the eddy's center (50 m) were congruent with enhanced pigment concentrations (0.50 mg m−3). Comparisons of the results obtained for E-Flux I (Noah) and E-Flux III (Opal) suggest that translation characteristics of cyclonic Hawaiian lee eddies may be important in establishing the biogeochemical and biological responses of the oligotrophic ocean to cyclonic eddies.  相似文献   

17.
Seagrass beds occur in various morphological forms, ranging from small patches to continuous meadows. The endemic Mediterranean seagrass Posidonia oceanica forms dense and extensive stands that occur in several different morphotypes, including reticulate (seagrass interspersed with a different habitat type, such as bare sand) and continuous beds. This study, undertaken in the Maltese Islands, examined whether reticulate and continuous P. oceanica beds, located adjacent to each other and at similar depths, had different within-bed architectural characteristics. Five commonly used architectural measures (shoot density, number of leaves per shoot, mean leaf length, mean leaf width and shoot biomass) were measured from P. oceanica shoots collected from the two bed types at three different spatial scales: (1) tens of metres (‘small’ scale); (2) hundreds of metres (‘medium’ scale); and (3) kilometres (‘large’ scale). Results of 2-factor ANOVA (factor 1=bed type; factor 2=sampling locality) carried out at the three spatial scales indicated significant differences between the two bed types in shoot density (P<0.01) and leaf length (P<0.05) at the small scale, and in leaf number (P<0.05) at the large scale. Significant interactions were also apparent for shoot density (at the large scale) and for shoot biomass (at the medium scale). However, the results obtained did not indicate consistent architectural differences between the two P. oceanica bed types over the spatial scales considered. Spatial variations in within-bed architectural characteristics observed were therefore thought to be attributable mainly to the influence of local environmental factors. The findings are discussed with reference to the conservation and management of P. oceanica habitat.  相似文献   

18.
The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit muddy sediments on the continental slope, although a few species occur near hydrothermal vents and cold seeps. We present data on the distribution and habitat characteristics of several species on the European continental shelf and slope from 48°N to 75°N and show how the animals interact with the chemistry of the sediments. The environments inhabited include: shallow (30 m), organic-rich, fjord sediments; slope sediments (1000–2200 m) and methane seeps at 330 m depth. All the species studied obtain nutrition from endosymbiotic bacteria. They take up reduced sulphur species, or in one case, methane, through the posterior parts of their tubes buried in the anoxic sediment. We conclude that most species undertake sulphide ‘mining’, a mechanism previously demonstrated in the bivalves Lucinoma borealis and Thyasira sarsi. These pogonophores participate in the sulphur cycle and effectively lower the sulphide content of the sediments. Our results show that the abundance of frenulate pogonophores increases with increasing sedimentation and with decreasing abundance of other benthos, particularly bioturbating organisms. The maximum sustainable carrying capacity of non-seep sediments for frenulate pogonophores is limited by the rate of sulphate reduction.  相似文献   

19.
Atlantic–Mediterranean anchovies were genetically characterized at two polymorphic nuclear loci (intron 6 of two creatine-kinase genes) and compared to reference Engraulis albidus and E. encrasicolus samples from the northern Western Mediterranean to provide new insights into their geographic structure. Northeastern Atlantic anchovy, represented by one sample from the Canary archipelago and one sample from the Alboran Sea, were genetically distinct from Mediterranean E. encrasicolus (Weir and Cockerham's  = 0.027–0.311), indicating geographic isolation from either side of the Almería–Oran oceanographic front. Generally smaller genetic differences were evident among anchovy populations from different sub-basins in the Mediterranean ( = − 0.019–0.116), the genetic differences between Black Sea and Ionian Sea/Aegean Sea anchovies being the strongest ( = 0.002–0.116). There was no evidence of the presence of E. albidus in our samples outside Camargue (northern shore of the Western Mediterranean). However, a sample from the southern Western Mediterranean appeared to be genetically intermediate between E. albidus and Mediterranean E. encrasicolus, indicating possible hybridization. Anchovy from the Benguela current system off southern Africa possessed allele frequencies characteristic of E. albidus at one locus and Northeastern Atlantic anchovy at the other locus, suggesting past introgression.  相似文献   

20.
Between 1970 to 2000, the annual mean suspended matter (SPM) concentrations in the Vlie and Marsdiep tidal inlets of the Wadden Sea varied over five times. The present paper examines the possible relationship between SPM in the Wadden Sea and changing river Rhine discharges and dredging operations. The major short-term variations in annual mean SPM in part of the Wadden Sea appears to be a non-linear, exponential, function of river Rhine discharge and dredge spoil disposal (110 km to over 200 km from the area in front of the Dutch coast near the river Rhine outlet). Correlation coefficients (with SPM as the fixed and dredge disposal as the independent variable) ranged from R=0·8 (deep tidal inlet of Marsdiep) to R=0·2 (shallow inner area of Vlie) and weakened mainly as a function of distance to the disposal site. The best correlation with river discharge was for Marsdiep tidal inlet (r=0·45), indicating the superior effect of dredge disposal over river discharge-related processes. Taking the estimated regression equation as an explorative model, indicates that, without any disposal of dredge spoil, the expected SPM concentration levels in the tidal inlets of the Wadden Sea will be <15 g m−3 (comparable to the 1950s). The overall mean (and the highest mean) annual concentrations for the investigation period reached 42 (90) g m−3 at Marsdiep and 35 (75) g m−3 at Vlie. Assuming a 10% (220 m−3 s−1) increase in river Rhine discharge over the next 50 years, and unchanged dredging policy and other circumstances, SPM concentrations would increase 5–15% for Marsdiep and Vlie. Compared with the calculated (12·4 g m−3 SPM in Marsdiep and 14·8 g m−3 SPM in Vlie) and measured (15 g m−3 SPM in Marsdiep) background SPM concentrations, the expected overall mean increase since 1950 is at least 250% of background. The natural variation in river Rhine discharge will cause further inter-annual variation. Changes in SPM concentrations, due to expected changes in wind climate, combined with river discharge are estimated to increase SPM concentrations 20% above the present situation. The possible implications of changes in land use in combination with further increasing river discharge, changed wind fields and increased temperature are discussed. An important management conclusion is that increasing mean river discharge will significantly increase the need for dredging and spoil disposal, and result in further elevated SPM concentrations in the Dutch coastal zone and the Wadden Sea. The presented relationships offer possibilities for developing new management strategies in relation to dredging and its effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号