首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have implemented a 2-dimensional numerical model for simulating gas hydrate and free gas accumulation in marine sediments. The starting equations are those of the conservation of the transport of momentum, energy, and mass, as well as those of the thermodynamics of methane hydrate stability and methane solubility in the pore-fluid. These constitutive equations are then integrated into a finite element in space, finite-difference in time scheme. We are then able to examine the formation and distribution of methane hydrate and free gas in a simple geologic framework, with respect to the geothermal heat flow, fluid flow, the methane in-situ production and basal flux. Three simulations are performed, leading to the build up of hydrate emplacements largely linear through time. Models act primarily as free gas accumulators and are relatively inefficient with respect to hydrate emplacements: 26–33% of formed methane are converted to hydrate. Seepage of methane across the sea-floor is negligible for fluid flow below 2. 10−11 kg/m2/s. At 5.625 10−11 kg/m2/s however, 9.7% of the formed methane seeps out of the model. Moreover, along strike variation arising in the 2-dimensional model are outlined. In the absence of focused flow, the thermodynamics of hydrate accumulation are primarily one-dimensional. However, changes in free methane compressibility (density) and methane solubility (the intrinsic dissolved methane flux) subtlety impact on the formation of a free gas zone and the distribution of the hydrate emplacements in our 2-dimensional simulations.  相似文献   

2.
In natural gas hydrate marine settings, cold seepage of methane fluid is a widely observed phenomenon, where authigenic minerals serve as an indication of potential gas hydrate-bearing reservoirs at depth. In this study, based on the data from the site HD196 near Dongsha Island, northern continental slope of South China Sea, laboratory experiments and numerical simulation studies were conducted to investigate the biogeochemical processes of authigenic mineral formation induced by methane seepage. The bioreactor experimental results show that in response to methane flux, pH increased to 8.5 after 20 days of reaction, and Eh declined rapidly first and then remained unchanged at about 100 mV. The decrease in SO42−, HS and HCO3 concentrations indicated the occurrence of anaerobic oxidation of methane coupled with sulfate reduction (AOM-SR). The depletion of Fe2+ implied the formation of iron-bearing minerals, e.g., iron sulfides. Carbonate minerals were also identified in the experimental phase of this study. Most iron sulfides existed as massive pieces, and in some cases as spherical or rod-shape pieces. The calcium carbonates were observed as blocky pieces. Numerical simulations were also performed to reproduce the biogeochemical reactions that occurred in the reactor experiments. Based on experimental data, kinetic parameters associated with the observed reactions were calibrated. The model simulated results are general consistent with those obtained by the experiments conducted in this study. The combination of simulation and experimental studies provided a powerful tool to investigate the biogeochemical processes in the methane leakage environment at different temporal and spatial scales. This study gave a new perspective to understand the formation of cold seep authigenic minerals in marine sediments, and was significant for future investigations on the effects of hydrate decomposition.  相似文献   

3.
Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (≤ 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations.In combination with δ13C- and δD-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1–2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6 m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.  相似文献   

4.
Seismic reflection data document for the first time the existence of a BSR in a limited area west of the Dnieper Canyon in the northwestern Black Sea. Seismic wide-angle data suggest that gas hydrates occupy in average 15±2% of the pore space in a zone of 100 m in thickness. A conservative quantification of the amount of methane associated with this gas hydrate occurrence is about 12±3×1011 m3 (0.6±0.2 Gt of methane carbon). Conductive heat flow deduced from the BSR depth is in the range of 21±6 to 55±15 mW m–2.  相似文献   

5.
Bottom simulating reflectors (BSRs), known as the base of gas hydrate stability zone, have been recognized and mapped using good quality three-dimensional (3D) pre-stack migration seismic data in Shenhu Area of northern South China Sea. Additionally, seismic attribute technique has been applied to better constrain on the distribution of gas hydrate. The results demonstrate that gas hydrate is characterized by “blank” zone (low amplitude) in instantaneous amplitude attribute. The thickness of gas hydrate stability zone inferred from BSR ranges from 125 to 355 m with an average of 240 m at sea water depth from 950 to 1,600 m in this new gas hydrate province. The volume of gas in-place bound in hydrate is estimated from 1.7 × 109 to 4.8 × 10m3, with the most likely value of around 3.3 × 10m3, using Monte Carlo simulation. Furthermore, geothermal gradient and heat flow are derived from the depths of BSRs using a conductive heat transfer model. The geothermal gradient varies from 35 to 95°C km−1 with an average of 54°C km−1. Corresponding heat flow values range from 43 to 105 mW m−2 with an average of 64 mW m−2. By comparison with geological characteristics, we suggest that the distribution of gas hydrate and heat flow are largely associated with gas chimneys and faults, which are extensively distributed in Shenhu Area, providing easy pathways for fluids migrating into the gas hydrate stability zone for the formation of gas hydrate. This study can place useful constraints for modeling gas hydrate stability zone from measured heat flow data and understanding the mechanism of gas hydrate formation in Shenhu Area.  相似文献   

6.
Raman spectroscopic measurements of synthetic gas hydrates in the ocean   总被引:1,自引:0,他引:1  
A Raman spectrometer extensively modified for deep ocean use was used to measure synthetic hydrates formed in an ocean environment. This was the first time hydrates formed in the ocean have been measured in situ using Raman spectroscopy. Gas hydrates were formed in situ in the Monterey Bay by pressurizing a Pyrex cell with various gas mixtures. Raman spectra were obtained for sI methane hydrate and sII methane + ethane hydrate. Gas occlusion resulting from rapid gas growth of methane hydrate was measured immediately after formation. The Raman shift for methane free gas was coincident with that of methane in the small 512 hydrate cage. The methane Raman peak widths were used to discriminate between methane in the free gas and hydrate phase. Methane + ethane sII hydrate was formed for 43 days on the seafloor. In this case, gas occlusion was not measured when the gas hydrates were allowed to form over an extended time period. Equivalent Raman spectra were obtained for the in situ and laboratory-formed sII methane + ethane hydrates, under similar p, T, and x conditions. With the Raman spectrometer operating in the ocean, seawater contributes to the Raman spectra obtained. Both the Raman bands for the sulfate ion and water were used to qualitatively determine the distribution of water phases measured (hydrate, seawater) in the Raman spectra.  相似文献   

7.
Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct–Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg− 1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.  相似文献   

8.
It is the intent of this paper to explore a significant extent of an entire passive continental margin for hydrate occurrence to understand hydrate modes of occurrence, preferred geologic settings and estimate potential volumes of methane. The presence of gas hydrates offshore of eastern Canada has long been inferred from estimated stability zone calculations, but little physical evidence has been offered. An extensive set of 2-D and 3-D, single and multi-channel seismic reflection data comprising in excess of 140,000 line-km was analyzed. Bottom simulating reflections (BSR) were unequivocally identified at seven sites, ranging between 250 and 445 m below the seafloor and in water depths of 620-2850 m. The combined area of the BSRs is 9311 km2, which comprises a small proportion of the entire theoretical stability zone along the Canadian Atlantic margin (∼715,165 km2). The BSR within at least six of these sites lies in a sedimentary drift deposit or sediment wave field, indicating the likelihood of grain sorting and potential porosity and permeability (reservoir) development. Although there are a variety of conditions required to generate and recognize a BSR, one might assume that these sites offer the most potential for highest hydrate concentration and exploitation. Total hydrate in formation at the sites of recognized BSR’s is estimated at 17 to 190 × 109 m3 or 0.28 to 3.12 × 1013 m3 of methane gas at STP. Although it has been shown that hydrate can exist without a BSR, the results from this regional study argue that conservative estimates of the global reserve of hydrate along continental margins are necessary.  相似文献   

9.
Natural gas hydrates is considered as a strategic unconventional clean hydrocarbon resource in the energy sector. Understanding the behavior of the rising methane gas bubbles during production leaks from the deep marine gas hydrate reservoirs well head is essential for environmental impact studies and to design environmental monitoring systems. Numerical model for quantitatively characterizing the vertical dissolution pattern of the wellhead released methane gas bubbles is analyzed for three potential gas hydrate locations in India. Simulation results indicate that the methane bubbles with diameter of 10?mm can transport methane gas till 650, 800, and 750?m from the seabed in the Krishna–Godavari(KG), Mahanadi and Andaman basins respectively. Results brought out that potential well head damage during methane hydrate production at 1050?m water depth could release up to 28?m3 of methane gas, in which 50% of the molar mass shall get dissolved within 40?m of water column from the seafloor.  相似文献   

10.
澳大利亚西北陆架盆地已被证实具有丰富的油气资源,而天然气水合物的相关研究尚未开展。本文利用天然气水合物地震识别技术,同时结合对澳大利亚西北陆架盆地天然气水合物成矿地质条件的分析,认为澳大利亚西北陆架盆地天然气水合物储量巨大,初步估计天然气水合物分布区蕴含甲烷量达18万亿m3。澳大利亚西北陆架盆地的构造演化是天然气水合物成藏所具备物化条件的基础,因此是天然气水合物成矿的重要影响因素之一。  相似文献   

11.
 On the southwestern Barents Sea shelf, sediments containing gas hydrates that overlie free gas have been inferred from multichannel seismic data. The volume of suspected gas hydrate is tentatively estimated to about 1.9×108 m3. The gas hydrate zone probably formed from thermogenic gas leaking from a deeper source. The hydrate zone may have thickened during the Neogene by including gas originally trapped as free gas below the hydrate following a significant downward migration of the isotherms caused by erosion and/or subsidence. Within the present oceanographic conditions, gas hydrate is suspected to be stable or slowly decomposing. Received: 20 December 1996 / Revision received: 20 August 1997  相似文献   

12.
The Taixinan Basin is one of the most potential gas hydrate bearing areas in the South China Sea and abundant gas hydrates have been discovered during expedition in 2013. In this study, geochemical and microbial methods are combinedly used to characterize the sediments from a shallow piston Core DH_CL_11(gas hydrate free) and a gas hydrate-bearing drilling Core GMGS2-16 in this basin. Geochemical analyses indicate that anaerobic oxidation of methane(AOM) which is speculated to be linked to the ongoing gas hydrate dissociation is taking place in Core DH_CL_11 at deep. For Core GMGS2-16, AOM related to past episodes of methane seepage are suggested to dominate during its diagenetic process; while the relatively enriched δ18O bulk-sediment values indicate that methane involved in AOM might be released from the "episodic dissociation" of gas hydrate.Microbial analyses indicate that the predominant phyla in the bacterial communities are Firmicutes and Proteobacteria(Gammaproteobacteria and Epsilonproteobacteria), while the dominant taxa in the archaeal communities are Marine_Benthic_Group_B(MBGB), Halobacteria, Thermoplasmata, Methanobacteria,Methanomicrobia, Group C3 and MCG. Under parallel experimental operations, comparable dominant members(Firmicutes and MBGB) are found in the piston Core DH_CL_11 and the near surface layer of the long drilling Core GMGS2-16. Moreover, these members have been found predominant in other known gas hydrate bearing cores, and the dominant of MBGB has even been found significantly related to gas hydrate occurrence. Therefore,a high possibility for the existing of gas hydrate underlying Core DH_CL_11 is inferred, which is consistent with the geochemical analyses. In all, combined geochemical and microbiological analyses are more informative in characterizing sediments from gas hydrate-associated areas in the South China Sea.  相似文献   

13.
Muri Basin in the Qilian Mountain is the only permafrost area in China where gas hydrate samples have been obtained through scientific drilling. Fracture-filling hydrate is the main type of gas hydrate found in the Qilian Mountain permafrost. Most of gas hydrate samples had been found in a thin-layer-like, flake and block group in a fracture of Jurassic mudstone and oil shale, although some pore-filling hydrate was found in porous sandstone. The mechanism for gas hydrate formation in the Qilian Mountain permafrost is as follows: gas generation from source rock was controlled by tectonic subsidence and uplift--gas migration and accumulation was controlled by fault and tight formation--gas hydrate formation and accumulation was controlled by permafrost. Some control factors for gas hydrate formation in the Qilian Mountain permafrost were analyzed and validated through numerical analysis and laboratory experiments. CSMGem was used to estimate the gas hydrate stability zone in the Qilian permafrost at a depth of 100–400 m. This method was used to analyze the gas composition of gas hydrate to determine the gas composition before gas hydrate formation. When the overlying formation of gas accumulation zone had a permeability of 0.05 × 10−15 m2 and water saturation of more than 0.8, gas from deep source rocks was sealed up to form the gas accumulation zone. Fracture-filling hydrate was formed in the overlap area of gas hydrate stability zone and gas accumulation zone. The experimental results showed that the lithology of reservoir played a key role in controlling the occurrence and distribution of gas hydrate in the Qilian Mountain permafrost.  相似文献   

14.
N.K. Bigalke  G. Rehder  G. Gust   《Marine Chemistry》2009,115(3-4):226-234
The dissolution of in-situ generated methane hydrate in undersaturated, synthetic seawater (S = 35) was investigated in a series of laboratory-based experiments at P-/T-conditions within the hydrate stability field. A controlled flow field was generated across the smooth hydrate surface to test if, in addition to thermodynamic variables, the dissolution rate is influenced by changing hydrodynamic conditions. The dissolution rate was found to be strongly dependent on the friction velocity, showing that hydrate dissolution in undersaturated seawater is a diffusion-controlled process. The experimental data was used to obtain diffusional mass transfer coefficients kd, which were found to correlate linearly with the friction velocity, u. The resulting kd/u-correlation allows predicting the flux of methane from natural gas hydrate exposures at the sediment/seawater interface into the bulk water for a variety of natural P, T and flow conditions. It also is a tool for estimating the rate of hydrate regrowth at locations where natural hydrate outcrops at the seafloor persist in contact with undersaturated seawater.  相似文献   

15.
Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean δ13C = −48.6‰ and δD = −248‰ for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage.  相似文献   

16.
Measurements of gas-, particle- and precipitation-phases of atmospheric mercury (Hg) were made in the South and equatorial Atlantic Ocean as part of the 1996 IOC Trace Metal Baseline Study (Montevideo, Uruguay to Barbados). Total gaseous mercury (TGM) ranged from 1.17 to 1.99 ng m−3, with a weighted mean of 1.61±0.09 ng m−3. These values compare well with Pacific Ocean data and earlier results from the Atlantic. The open-ocean samples recorded a distinctive inter-hemispheric gradient, which is consistent with a long-lived trace gas emitted to a greater extent from the Northern than from the Southern Hemisphere. Correlations with surface 222Rn measurements indicate an influence of regional terrestrial sources on open-ocean TGM concentrations. Total Hg in precipitation ranged from 10 to 99 pM (volume-weighted average: 17.8±2.9 pM). On average, about 72% of the total Hg was “reactive” (i.e., reducible by SnCl2). The data showed an apparent rapid nonlinear decrease in concentration with event size (“washout curve”). The wet depositional flux was estimated at 18–36 nmol m−2 yr−1 (4–7 μg m−2 yr−1), which is slightly lower than that found in mid-continental locations of North America (6–12 μg m−2 yr−1). 210Pb analyses indicate a strong impact of particles on rain Hg concentrations. Particle-phase Hg (range 5–25 fmol m−3; mean 12±1 fmol m−3; 66% “reactive”) was comparable to values over the equatorial Pacific. The dry depositional flux is ca. 0.4 nmol m−2 yr−1, or 0.4–1.0% of the wet flux. Particle-phase Hg concentrations did not change significantly when African dust was present during sampling. However, the Hg/Al ratios were consistent with crustal values during the dust periods. The residence time of TGM was calculated to be 1.3–3.4 yr in this region, based on standing stock estimates. Incubation of rainwater added to surface seawater gave reduction rates [i.e., production of elemental Hg (Hg°); 1.6–4.3% d of total Hg added] comparable to additions of inorganic ionic standards, indicating that Hg+2 from precipitation is reduced in a similar manner in surface waters. Thus, precipitation-phase Hg is generally available for evasion to the atmosphere following deposition to the surface ocean, effectively enhancing the mobility and residence time of Hg at the Earth's surface.  相似文献   

17.
Estimating the amount of methane in the seafloor globally as well as the flux of methane from sediments toward the ocean–atmosphere system are important considerations in both geological and climate sciences. Nevertheless, global estimates of methane inventories and rates of methane production and consumption through anaerobic oxidation in marine sediments are very poorly constrained. Tools for regionally assessing methane formation and consumption rates would greatly increase our understanding of the spatial heterogeneity of the methane cycle as well as help constrain the global methane budget. In this article, an algorithm for calculating methane consumption rates in the inner shelf is applied to the gas-rich sediments of the Belt Seas and The Sound (North Sea–Baltic Sea transition). It is based on the depth of free gas determined by hydroacoustic techniques and the local methane solubility concentration. Due to the continuous nature of shipboard hydroacoustic measurements, this algorithm captures spatial heterogeneities in methane fluxes better than geochemical analyses of point sources such as observational/sampling stations. The sensibility of the algorithm with respect to the resolution of the free gas depth measurements (2 m vs. 50 cm) is proven of minor importance (a discrepancy of <10%) for a small part of the study area. The algorithm-derived anaerobic methane oxidation rates compare well with previous measured and modeling studies. Finally, regional results reveal that contemporary anaerobic methane oxidation in worldwide inner-shelf sediments may be an order of magnitude lower (ca. 0.24 Tmol year–1) than previous estimates (4.6 Tmol year–1). These algorithms ultimately help improve regional estimates of anaerobic oxidation of methane rates.  相似文献   

18.
The Qiangtang Basin is a significant prospective area for hydrocarbon and gas hydrate resources in the Tibetan Plateau, China. However, relatively little work has been performed to characterise heat flow in this basin, which has restricted petroleum and gas hydrate exploration. In this study, we compare present and palaeo-heat flow in the Qiangtang Basin to provide information on geothermal regime, hydrocarbon generation and permafrost that is necessary for further petroleum and gas hydrate exploration. We base our study on temperature data from a thermometer well, thermal conductivity tests, vitrinite reflectance data, homogenisation temperature data from fluid inclusions, stratigraphic information and a time-independent modelling approach. Our results indicate that in the central Qiangtang Basin, the present thermal gradient is approximately 15.5 °C/km, and heat flow is approximately 46.69 mW/m2. Heat flow in the Qiangtang Basin is not relatively stable since the Early Jurassic, as previous research has suggested, and it is generally decreasing with time. Additionally, there is a clear difference between the hottest thermal regime of the southern and northern Qiangtang Depressions during Cretaceous to Pleistocene time. In the southern Qiangtang Depression, the palaeogeothermal gradient is approximately 32.0 °C/km, and palaeo-heat flow is approximately 70 mW/m2. However, in the northern Qiangtang Depression, the palaeogeothermal gradient exceeds 81.8 °C/km, and palaeo-heat flow is greater than 172.09 mW/m2. The high thermal regime in the northern Qiangtang Depression is driven mainly by hydrothermal convection. Gas reservoirs are possible targets for hydrocarbon exploration in this depression. Currently, the northwestern part of the northern Qiangtang Depression is the most favourable area for gas hydrate exploration in the Qiangtang Basin.  相似文献   

19.
Hydrate-bearing sediment cores were retrieved from recently discovered seepage sites located offshore Sakhalin Island in the Sea of Okhotsk. We obtained samples of natural gas hydrates and dissolved gas in pore water using a headspace gas method for determining their molecular and isotopic compositions. Molecular composition ratios C1/C2+ from all the seepage sites were in the range of 1,500–50,000, while δ13C and δD values of methane ranged from ?66.0 to ?63.2‰ VPDB and ?204.6 to ?196.7‰ VSMOW, respectively. These results indicate that the methane was produced by microbial reduction of CO2. δ13C values of ethane and propane (i.e., ?40.8 to ?27.4‰ VPDB and ?41.3 to ?30.6‰ VPDB, respectively) showed that small amounts of thermogenic gas were mixed with microbial methane. We also analyzed the isotopic difference between hydrate-bound and dissolved gases, and discovered that the magnitude by which the δD hydrate gas was smaller than that of dissolved gas was in the range 4.3–16.6‰, while there were no differences in δ13C values. Based on isotopic fractionation of guest gas during the formation of gas hydrate, we conclude that the current gas in the pore water is the source of the gas hydrate at the VNIIOkeangeologia and Giselle Flare sites, but not the source of the gas hydrate at the Hieroglyph and KOPRI sites.  相似文献   

20.
The huge amount of methane hydrate deposits identified in deep marine sediments is considered as the new resource for future energy. Since carbonates are one of the major components of marine sediments, in the present study, an investigation has been made to study methane hydrate stability and kinetics in the presence of CaCO3 and MgCO3. Effect of the presence of carbonates on the solubility of methane in the system has also been examined as it directly affects the hydrate formation process. It has been observed that in presence of CaCO3 and MgCO3, the hydrate formation is inhibited. Comparative studies have also been done in the presence of artificial seawater to consider the effect of presence of different salts. Mole consumption of methane gas during hydrate formation in different carbonate samples was measured using real gas equation and found to be minimum in CaCO3 in seawater sample due to the combined effect of the presence of CaCO3 and different salts of seawater. An increase in nucleation and induction time was also observed demonstrating the inhibition of hydrate formation in the presence of these components. Further, the decrease in hydrate formation rate also confirmed the inhibition effect of CaCO3 and MgCO3 on hydrate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号