首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The persistence of the anthropogenic halogenated tracers, CFC-11 (CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2FCClF2), carbon tetrachloride (CCl4) and methyl chloroform (CH3CCl3) in oxygen-depleted waters was investigated in the anoxic fjord Framvaren in southern Norway. A model for the ventilation of the water in the fjord was created based on tritium and CFC-12 profiles. The results suggest that CFC-12 is stable in this environment, although still affected by particulate scavenging, while the other four halocarbon species shows signs of significant removal in the oxic/anoxic interface. The first-order removal coefficients were calculated to be 0.35, 0.19, 1.23 and 0.31 year−1 for CFC-11, CFC-113, CCl4 and CH3CCl3, respectively. Significant downward flux of halogenated tracers by sinking organic matter is suggested by the model; the tracers are subsequently released to the water column by the remineralisation of the particles. This process acts as a sink of halogenated tracers in the surface waters, whereas it is a source for the deep waters. Our results points to bioaccumulation factors (BF) for the CFC tracers in the order of 4.4–5.4 (log BF), which is 100–600 times those previously reported. This might be of significance to near-shore, semi-enclosed, basins with a high flux of organic matter, but would still have little importance in open ocean basins.  相似文献   

2.
《Ocean Modelling》2002,4(2):89-120
We compared the 13 models participating in the Ocean Carbon Model Intercomparison Project (OCMIP) with regards to their skill in matching observed distributions of CFC-11. This analysis characterizes the abilities of these models to ventilate the ocean on timescales relevant for anthropogenic CO2 uptake. We found a large range in the modeled global inventory (±30%), mainly due to differences in ventilation from the high latitudes. In the Southern Ocean, models differ particularly in the longitudinal distribution of the CFC uptake in the intermediate water, whereas the latitudinal distribution is mainly controlled by the subgrid-scale parameterization. Models with isopycnal diffusion and eddy-induced velocity parameterization produce more realistic intermediate water ventilation. Deep and bottom water ventilation also varies substantially between the models. Models coupled to a sea-ice model systematically provide more realistic AABW formation source region; however these same models also largely overestimate AABW ventilation if no specific parameterization of brine rejection during sea-ice formation is included. In the North Pacific Ocean, all models exhibit a systematic large underestimation of the CFC uptake in the thermocline of the subtropical gyre, while no systematic difference toward the observations is found in the subpolar gyre. In the North Atlantic Ocean, the CFC uptake is globally underestimated in subsurface. In the deep ocean, all but the adjoint model, failed to produce the two recently ventilated branches observed in the North Atlantic Deep Water (NADW). Furthermore, simulated transport in the Deep Western Boundary Current (DWBC) is too sluggish in all but the isopycnal model, where it is too rapid.  相似文献   

3.
氟里昂化学示踪技术在海洋研究中的应用   总被引:2,自引:0,他引:2  
氟里昂化学示踪是海洋科学研究的有效工具。文章着重介绍了CFC-11,CFC-12,CFC-113,CC14,SF6等氟里昂示踪物,阐述了氟里昂化学示踪技术在海洋水团运动、水团年龄及海气交换等方面的应用。  相似文献   

4.
An Ensemble Kalman Filter is applied to assimilate observed tracer fields in various combinations in the Bern3D ocean model. Each tracer combination yields a set of optimal transport parameter values that are used in projections with prescribed CO2 stabilization pathways. The assimilation of temperature and salinity fields yields a too vigorous ventilation of the thermocline and the deep ocean, whereas the inclusion of CFC-11 and radiocarbon improves the representation of physical and biogeochemical tracers and of ventilation time scales. Projected peak uptake rates and cumulative uptake of CO2 by the ocean are around 20% lower for the parameters determined with CFC-11 and radiocarbon as additional target compared to those with salinity and temperature only. Higher surface temperature changes are simulated in the Greenland–Norwegian–Iceland Sea and in the Southern Ocean when CFC-11 is included in the Ensemble Kalman model tuning. These findings highlights the importance of ocean transport calibration for the design of near-term and long-term CO2 emission mitigation strategies and for climate projections.  相似文献   

5.
Sulfur hexafluoride (SF6) tracer release experiments were carried out to trace the iron-fertilized water mass during the iron-fertilization experiments in the western North Pacific of Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study II (SEEDS II) in 2004. A solution of Fe and SF6 tracer was released into the surface mixed layer over an 8×8 km area, and the fertilized patch was traced by onboard SF6 analysis for 12 days during each experiment. A Lagrangian frame of reference was maintained by the use of a drogued GPS buoy released at the center of the patch to reduce the advection effect on observations. The patch moved along the contour of sea-surface height (SSH) of a clockwise mesoscale eddy for 4 days after release. Then strong easterly winds dragged the patch across the contour of SSH. The patch behavior was affected by both the mesoscale eddy and surface winds. Apparent horizontal diffusivities were determined by the change of the distribution of SF6 concentrations. The averaged apparent horizontal diffusivity was about 49 m2 s−1 during SEEDS II. It was larger than the one in SEEDS. Mixed-layer depth (MLD) was 8.5–18 m during SEEDS, and 12–33 m during SEEDS II. The larger horizontal diffusivity and deeper MLD in SEEDS II were disadvantages to maintain a high iron concentration in the surface layer compared to SEEDS. Temporal change of the MLD corresponded to the temporal change of chlorophyll-a concentration. Temporal change in the surface MLD was also important for the response of phytoplankton by iron fertilization.  相似文献   

6.
The formation of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) significantly contributes to the total uptake and storage of anthropogenic gases, such as CO2 and chlorofluorocarbons (CFCs), within the world's oceans. SAMW and AAIW formation rates in the South Pacific are quantified based on CFC-12 inventories using hydrographic data from WOCE, CLIVAR, and data collected in the austral winter of 2005. This study documents the first wintertime observations of CFC-11 and CFC-12 saturations with respect to the 2005 atmosphere in the formation region of the southeast Pacific for SAMW and AAIW. SAMW is 94% and 95% saturated for CFC-11 and CFC-12, respectively, and AAIW is 60% saturated for both CFC-11 and CFC-12. SAMW is defined from the Subantarctic Front to the equator between potential densities 26.80-27.06 kg m−3, and AAIW is defined from the Polar Front to 20°N between potential densities 27.06-27.40 kg m−3. CFC-12 inventories are 16.0×106 moles for SAMW and 8.7×106 moles for AAIW, corresponding to formation rates of 7.3±2.1 Sv for SAMW and 5.8±1.7 Sv for AAIW circulating within the South Pacific. Inter-ocean transports of SAMW from the South Pacific to the South Atlantic are estimated to be 4.4±0.6 Sv. Thus, the total formation of SAMW in the South Pacific is approximately 11.7±2.2 Sv. These formation rates represent the average formation rates over the major period of CFC input, from 1970 to 2005. The CFC-12 inventory maps provide direct evidence for two areas of formation of SAMW, one in the southeast Pacific and one in the central Pacific. Furthermore, eddies in the central Pacific containing high CFC concentrations may contribute to SAMW and to a lesser extent AAIW formation. These CFC-derived rates provide a baseline with which to compare past and future formation rates of SAMW and AAIW.  相似文献   

7.
The first iron (Fe) – fertilization experiment in the western North Pacific was carried out using SF6 to trace the Fe-fertilized water mass. A solution in 10,800 liters of seawater of 350 kg of Fe and 0.48 M of SF6 tracer was released into the mixed layer over a 8 × 10 km area. On the first underway transects through the patch after the Fe release, we observed a significant increase of dissolved Fe (ave. 2.89 nM). The fertilized patch was traced for 14 days by on-board SF6 analysis. A Lagrangian frame of reference was maintained by the use of a drogued GPS buoy released at the center of the patch. The patch moved westward at a rate of 6.8 km d−1. Mixed layer depth increased from 8.5 to 15 m during the experiment. Horizontal diffusivity was determined by the change of SF6 concentration in the patch. The horizontal diffusivity increased during the experiment. We evaluate here the fate of Fe in a Fe-fertilized patch using the dilution rate determined from sulphur hexafluoride (SF6) concentration. Dissolved Fe concentrations subsequently decreased rapidly to 0.15 nM on Day 13. However, the dissolved Fe half-life of 43 h was relatively longer than in previous Fe-enrichment studies, and we observed a larger increase of the centric diatom standing stock and corresponding drawdown of macro-nutrients and carbon dioxide than in the previous studies. The most important reason for the larger response was the phytoplankton species in the western North Pacific. In addition, the smaller diffusivity and shallower mixed layer were effective to sustain the higher dissolved Fe concentration compared to previous experiments. This might be one reason for the larger response of diatoms in SEEDS.  相似文献   

8.
Labrador Sea convection was most intense and reached the greatest depths in the early 1990s, followed by weaker, shallower, and more variable convection after 1995. The Simple Ocean Data Assimilation (SODA) version 2.0.2/2.0.4 assimilation model is used to explore convective activity in the North Atlantic Ocean for the period from 1992 to 2007. Hydrographic conditions, which are relatively well observed during this period, are used to compare modeled and observed winter mixed-layer depths and water mass anomalies in relation to Deep Western Boundary Current transports and meridional overturning circulation (MOC) changes at the exit of the subpolar basin. The assimilation differs markedly from local observations in the March mixed-layer depth, which represents deep convection and water mass transformation. However, mean MOC rates at the exit of the subpolar gyre, forced by stratification in the mid-latitudes, are similar to estimates based on observations and show no significant decrease during the 1992–2007 period. SODA reproduces the deep Labrador Sea Water formation in the western North Atlantic without any clear indication of significant formation in the Irminger Sea while the lighter upper Labrador Sea Water density range is reached in the Irminger Sea in the 1990s, in agreement with existing assumptions of deep convection in the Irminger Sea and also supported by computed lag correlations with the Labrador Sea. Deep Water transformation mainly takes place in the eastern North Atlantic. The introduction of CFC-11 into the SODA model as a tracer reproduces the mean and multiyear variations of observed distributions.  相似文献   

9.
汪浩  何真  张婧  杨桂朋 《海洋学报》2018,40(10):96-109
运用吹扫-捕集气相色谱法测定了2017年夏季长江口及其邻近海域海水中4种常见的挥发性卤代烃(VHCs,包括一氟三氯甲烷(CFC-11)、碘甲烷(CH3I)、三氯甲烷(CH3CCl3)和四氯乙烯(C2Cl4))以及大气中CFC-11、CH3I和C2Cl4的浓度。结果表明,表层海水中4种VHCs浓度的水平分布受长江径流输入影响强烈,整体上呈现近岸高、远海低的趋势。垂直方向上4种VHCs浓度最高值出现在10 m水层,长江口内断面的浓度整体高于口外断面的浓度。海水中VHCs的浓度分布受水文环境、生物释放和人为因素等的共同影响。相关性分析表明CH3I与Chl a浓度不存在明显的相关性,而CFC-11与CH3I、C2Cl4浓度存在显著相关性(P<0.01),表明调查海域人为源对CH3I和C2Cl4的影响大于天然源。大气中CFC-11、CH3I和C2Cl4的浓度分布整体上呈现近岸高、远海低的趋势。CFC-11的浓度低于全球平均值,表明我国CFC-11的排放得到了有效控制。后向轨迹分析表明来自近岸的陆源污染物的扩散和输送是调查海域大气中3种VHCs的重要来源。CFC-11、CH3I和C2Cl4的海-气通量平均值分别为24.99 nmol/(m2·d)、7.80 nmol/(m2·d)、1.55 nmol/(m2·d),表明夏季长江口及其邻近海域是大气中这3种VHCs的源。  相似文献   

10.
Chlorofluorocarbon (CFC) 11 and 12 transports across the transoceanic World Ocean Circulation Experiment (WOCE) A25 section in the subpolar North Atlantic are derived from an inverse model using hydrographic and ADCP data (Lherminier et al., 2007). CFC and anthropogenic carbon (CANT) advective transports contrary to expected are uncoupled: CANT is transported northeastwards (82±39 kmol s?1) mainly within the overturning circulation, while CFC-11 and CFC-12 are transported southwestwards (?24±4 and ?11±2 mol s?1, respectively) as part of the large-scale horizontal circulation. The main reason for this uncoupled behaviour is the complex CFC vs. CANT relation in the ocean, which stems from the contrasting temperature relation for both tracers: more CANT dissolves in warmer waters with a low Revelle factor, while CFC’s solubility is higher in cold waters. These results point to CANT and CFC having different routes of uptake, accumulation and transport within the ocean, and hence: CANT transport would be more sensitive to changes in the overturning circulation strength, while CFC to changes in the East Greenland Current and Labrador Sea Water formation in the Irminger Sea. Additionally, CANT and CFCs would have different sensitivities to circulation and climate changes derived from global warming as the slowdown of the overturning circulation, increase stratification due to warming and changes in wind stress.  相似文献   

11.
Over a period of 5 days between August 12 and 17, 2005, we performed a gas exchange experiment using the dual tracer method in a tidal coastal ocean located off the southern coast of Korea. The gas exchange rate was determined from temporal changes in the ratio of3He to SF6 measured daily in the surface mixed layer. The measured gas exchange rate (k CO 2), normalized to a Schmidt number of 600 for CO2 in fresh water at 20°C, was approximately 5.0 cm h-1 at a mean wind speed of 3.9 m s-1 during the study period. This value is significantly less than those obtained from floating chamber-based experiments performed previously in estuarine environments, but is similar in magnitude to values obtained using the dual tracer method in river and tidal coastal waters and values predicted on the basis of the relationship between the gas exchange rate and wind speed (Wanninkhof 1992), which is generally applicable to the open ocean. Our result is also consistent with the relationship of Raymond and Cole (2001), which was derived from experiments carried out in estuarine environments using222Rn and chlorofluorocarbons along with measurements undertaken in the Hudson River, Canada, using SF6 and3He. Our results indicate that tidal action in a microtidal region did not discernibly enhance the measuredk CO 2 value.  相似文献   

12.
以描述中尺度涡旋对示踪物的输送作用为目的的湍流混合方案GM90经证明对海洋模式的模拟能力较以前的湍流混合方案有较大的提高.该方案涉及到两个主要参数:等密度面扩散系数(AI)和等密度面厚度扩散系数(Aith).该文的目的就是利用中国科学院大气物理研究所(IAP)全球海洋环流模式L30T63研究以上两个系数取值大小对主动示踪物(温盐)以及被动示踪物(CFC-11)海洋分布的影响.实验结果表明这两个系数的取值可明显改变大洋温盐垂直分布以及海洋对CFC-11的吸收,且两个系数在其中起到的作用有很大的差异.从几个剖面的分析结果可知,总的来说,AI的增加使得CFC-11主要储存区的模拟结果更接近观测资料,而Aith的增大使得模拟结果变差.  相似文献   

13.
Assessment was made of residual ratio of North Pacific Intermediate Water (NPIW) produced in subpolar region of the North Pacific using chlorofluorocarbons, CFC-11 and CFC-12 (CCl3F and CCl2F2), along 175°E. NPIW on density horizons less than 26.80 remained more than 80% north of 30°N. It was suggested that new NPIW laterally spreads over the northern North Pacific without hardly being diluted by the surroundings. For density horizons greater than 26.80 north of 30°N, NPIW remained less than 60%. The difference in the residual ratio between <26.80 and >26.80 north of 30°N suggests that NPIW is produced on density horizons less than 26.80, which contacts the atmosphere in the subpolar region, and that NPIW is diluted by upwelling deep water on density horizons greater than 26.80 in high latitude of the North Pacific. NPIW on a density horizon of 26.80 remained about 50% south of 30°N. The decrease in the horizontal distribution of the residual ratio of NPIW suggests that half the new NPIW produced in the subpolar region is laterally spread over the North Pacific with the southward movement of NPIW.  相似文献   

14.
Several methods to compute the anthropogenic component of total dissolved inorganic carbon () in the ocean have been reported, all in some way deducing (a) the effect by the natural processes, and (b) the background concentration in the pre-industrial scenario. In this work we present a method of calculating using nutrient and CFC data, which takes advantage of the linear relationships found between nitrate (N), phosphate (P) and CFC-11 in the Nordic Seas sub-surface waters. The basis of the method is that older water has lower CFC-11 concentration and also has been exposed to more sinking organic matter that has decayed, resulting in the slopes of P versus CFC-11 and N versus CFC-11 being close to the classic Redfield ratio of 1:16. Combining this with the slope in total alkalinity (AT) versus CFC-11 to correct for the dissolution of metal carbonates gives us the possibility to deduce the concentration of anthropogenic CT in the Nordic Seas. This further allowed us to compute the inventory of anthropogenic CT below 250 m in the Nordic Seas in spring 2002, to ∼1.2 Gt C.  相似文献   

15.
Concentrations of total carbonate, alkalinity and dissolved oxygen were obtained near the 1973 GEOSECS stations in the North Pacific subpolar region north of 40°N along 175°E between 1993 and 1994. A difference of excess CO2 content between the GEOSECS and our expeditions was estimated. The maximum difference in water column inventory of excess CO2 has increased by about 280 gC m–2 above 2000 m depth which apparently means an uptake of excess CO2 taken from air to sea during the last two decades. An averaged value of the annual flux of excess CO2 at 75–1000 m depth was 8.63±2.01 gC m–2yr–1 in the North Pacific subpolar region. By introducing the annual flux of excess CO2 into a two-box model for the North Pacific subpolar region, a penetration factor of excess CO2 from air to sea was obtained to be 1.08×10–2 gC m–3ppm–1 in the North Pacific subpolar region. Based on this factor, the surface concentration of excess CO2 in the North Pacific subpolar region was estimated to be 68 mole I–1, suggesting that the North Pacific subpolar region absorbed atmospheric excess CO2 more than the saturated concentration of excess CO2. Total amount of excess CO2 taken from the North Pacific subpolar region by 1993 was estimated to be 36.2×1015 gC, which was equal to about one tenth of that released by human activities after the preindustrial era.  相似文献   

16.
Time-series sediment traps were deployed in the subtropical oligotrophic northwestern Pacific (SONP) at three depths from August to September 2015 to better understand vertical flux of sinking particles. Sinking particles were collected at 5-day intervals over the sediment trap deployment period. The average total mass flux at water depths of 400 m, 690 m, and 1,710 m was 9.1, 4.4, and 4.1 mg m-2day-1, respectively. CaCO3 materials constituted 50 to 70% of sinking particles while in comparison particulate organic carbon (POC) constituted up to 20%. A synchronous variation of total mass flux was observed at the three depths, indicating that calcite-dominated particles sank from 400 to 1,710 m within a 5-day period. POC flux at these water depths was 2.4, 0.38, and 0.31 mg m-2day-1, respectively. Our results indicate low transfer efficiencies of 16% from 400 to 690 m and 13% for the 400 to 1,710 m depth range. The estimated transfer efficiencies were significantly lower than those observed at the K2 station in the northwest Pacific subarctic gyre, presumably because of a prevalence of pico-cyanobacteria in the SONP. Because cyanobacteria have a semi-permeable proteinaceous shell, they are more readily remineralized by bacteria than are siliceous phytoplankton in the northwest Pacific subarctic gyre. Continued surface water warming and expansion of the SONP will likely have a profound impact on ocean acidification in the northwest Pacific, possibly affecting the transfer efficiency of sinking POC to the deep-sea.  相似文献   

17.
Methods are described for the rapid (11 min) automated shipboard analysis of dissolved sulfur hexafluoride (SF6) in small volume (200 cm3) seawater samples. Estimated precision for the SF6 measurements is 2% or 0.02 fmol kg−1 (whichever is greater). The method also allows for the simultaneous measurement of chlorofluorocarbon-11 (CFC11) and chlorofluorocarbon-12 (CFC12) on the same water sample, with significantly improved sensitivity over previous analytical methods.  相似文献   

18.
Okhotsk Sea Intermediate Water (OSIW), the source water for ventilation of North Pacific Intermediate Water, exhibits a multidecadal warming trend. Historical data show that OSIW temperatures increased by 0.28, 0.57, 0.31 and 0.10°C during 1955 to 2003 at potential densities of 26.8, 27.0, 27.2 and 27.4σ θ , at depths of approximately 250, 500, 700 and 900 m, respectively. This rate of warming is much faster than that of the global ocean. This OSIW warming is likely linked to the reduced ventilation of cold Dense Shelf Water associated with brine rejection during sea ice formation.  相似文献   

19.
Transport between pore waters and overlying surface waters of Flamengo Bay near Ubatuba, Brazil, was quantified using natural and artificial geochemical tracers, 222Rn, Cl, and SF6, collected from multi-level piezometers installed along a transect perpendicular to the shore. Eight sampling ports positioned along the length of the piezometers allowed sampling of pore waters at discrete depth intervals from 10 to 230 cmbsf (centimeters below seafloor). Small volume samples were collected from the piezometers using a peristaltic pump to obtain pore water depth profiles. Pore water 222Rn is deficient in shallow sediments, allowing application of a diffusion-corrected 222Rn exchange rate. This model estimates the magnitude of pore water exchange rates to be about 130–419 cm/day. An SF6-saturated fluorescein dye tracer was gently pumped into deep pore waters and exchange rates estimated from this method range from 29 to 185 cm/day. While absolute rates are higher using 222Rn than SF6, rates are of similar magnitudes and the trends with distance from shore are the same – flow is greatest 6 m from shore and decreases by more than 50% further offshore. A Cl mass balance indicates the greatest fraction of fresh SGD occurs along an apparent preferential flow path in sediments within 5–7 m of the shoreline (87%). Recirculating bay waters through sediments dominate pore water advection at 10 m offshore where only 4% of the flow can be attributed to a freshwater source. Both fresh and marine sources combine to make up submarine groundwater discharge to coastal water bodies. The magnitude of fresh aquifer discharge is often a spatially variable and minor component of the total discharge.  相似文献   

20.
Chlorofluorocarbon (CFC) inventories provide an independent method for calculating the rate of North Atlantic Deep Water (NADW) formation. From data collected between 1986 and 1992, the CFC-11 inventories for the major components of NADW are: 4.2 million moles for Upper Labrador Sea Water (ULSW), 14.7 million moles for Classical Labrador Sea Water (CLSW), 5.0 million moles for Iceland–Scotland Overflow Water (ISOW), and 5.9 million moles for Denmark Strait Overflow Water (DSOW). The inventories directly reflect the input of newly formed water into the deep Atlantic Ocean from the Greenland, Iceland and Norwegian Seas and from the surface of the subpolar North Atlantic during the time of the CFC-11 transient. Since about 90% of CFC-11 in the ocean as of 1990 entered the ocean between 1970 and 1990, the formation rates estimated by this method represent an average over this time period. Formation rates based on best estimates of source water CFC-11 saturations are: 2.2 Sv for ULSW, 7.4 Sv for CLSW, 5.2 Sv for ISOW (2.4 Sv pure ISOW, 1.8 Sv entrained CLSW, and 1.0 Sv entrained northeast Atlantic water) and 2.4 Sv for DSOW. To our knowledge, this is the first calculation for the rate of ULSW formation. The formation rate of CLSW was calculated for an assumed variable formation rate scaled to the thickness of CLSW in the central Labrador Sea with a 10 : 1 ratio of high to low rates. The best estimate of these rates are 12.5 and 1.3 Sv, which average to 7.4 Sv for the 1970–1990 time period. The average formation rate for the sum of CLSW, ISOW and DSOW is 15.0 Sv, which is similar to (within our error) previous estimates (which do not include ULSW) using other techniques. Including ULSW, the total NADW formation rate is about 17.2 Sv. Although ULSW has not been considered as part of the North Atlantic thermohaline circulation in the past, it is clearly an important component that is exported out of the North Atlantic with other NADW components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号