首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ocean Engineering》1999,26(3):277-285
A simple model is developed to study the inception of sheet flow in oscillatory flow based on the available experimental data. The inception of sheet flow in oscillatory flow is well defined by the simple model: A/d=KA2ω/ν+B, where A is the semi-excursion of wave orbital motion near the bed, d is the grain size, ω is the angular frequency, ν is the kinematic viscosity of water, and K and B are the coefficients and dependent on sediment properties only. The inception velocity of sheet flow derived from the model is shown to be the function of grain size d, oscillatory period T and specific sediment density s. For a given sediment, the inception velocity is found to increase sharply initially with T and then approach a constant at T>6.0 s. The present model is quite simple and gives good agreement with the available experimental data.  相似文献   

2.
《Coastal Engineering》2006,53(5-6):531-542
The inception of the sheet flow regime as well as the effects of the phase lag when the sheet flow regime is established were investigated for oscillatory flows and combined steady and oscillatory flows. A new criterion for the inception of sheet flow is proposed based on around 300 oscillatory flow cases from experiments. This criterion was introduced in the Camenen and Larson [Camenen, B., Larson, M., 2005. A bedload sediment transport formula for the nearshore. Estuarine, Coastal and Shelf Science 63, 249–260.] bed load formula in order to take into account phase-lag effects in the sheet flow regime. The modification of the Camenen and Larson formula significantly improves the overall agreement with data and yields a correct behavior in relation to some of the main governing parameters, which are the median grain size d50, the orbital wave velocity Uw, and the wave period Tw. The calibration of the new formula was based on more than 200 experimental data values on the net sediment transport rate for a full wave cycle. A conceptual model was also proposed to estimate the ratio between sediment transport rate with and without phase lag, (rpl = qs,net / qs,net,ϕ=0). This simple model provides accurate results and may be used together with any quasi-steady model for bed load transport.  相似文献   

3.
A simple model is developed to study the initial motion of sediment on a horizontal bed under non-breaking waves. The model is derived to be A=C(TT0) based on a wide range of experimental data collected in different flow regimes, where A is the nearbed semi-excursion of wave motion, T is the wave period, and C and T0 are the coefficients dependent on sediment properties only. For a given sediment, the onset velocity of sediment motion derived from the model is shown to initially increase sharply with wave period T and then approach a constant. The flow Reynolds number Re corresponding to an initiated sediment is also calculated from the simple model and found to be a function of sediment properties and wave period. For the completeness of this study, the initial motion of light sediment under very short waves is also investigated. The present model agrees well with the available laboratory and field data.  相似文献   

4.
5.
Sheet flow and suspension of sand in oscillatory boundary layers   总被引:1,自引:0,他引:1  
after revisionTime-dependent measurements of flow velocities and sediment concentrations were conducted in a large oscillating water tunnel. The measurements were aimed at the flow and sediment dynamics in and above an oscillatory boundary layer in plane bed and sheet-flow conditions. Two asymmetric waves and one sinusoidal wave were imposed using quartz sand with D50 = 0.21 mm. A new electro-resistance probe with a large resolving power was developed for the measurement of the large sediment concentrations in the sheet-flow layer. The measurements revealed a three layer transport system consisting of a pick-up/deposition layer, an upper sheet flow layer and a suspension layer.In the asymmetric wave cases the total net transport was directed “onshore” and was mainly concentrated in the thin sheet flow layer (< 0.5 cm) at the bed. A small net sediment flux was directed “offhore” in the upper suspension layer. The measured flow velocities, sediment concentrations and sedimenl fluxes showed a good qualitative agreement with the results of a (numerical) 1DV boundary-layer flow and transport model. Although the model did not describe all the observed processes in the sheet-flow and suspension layer, the computational results showed a reasonable agreement with measured net transport rates in a wide range of asymmetric wave conditions.  相似文献   

6.
层移输沙是海岸带泥沙运动的主要形式之一,其垂向悬沙浓度分布规律的研究一直是海岸工程关心的重点。一般情况下,经典的纯扩散模型被用来描述和解释悬沙浓度的试验数据,该模型认为周期平均悬沙浓度主要由参考浓度、泥沙沉速和泥沙扩散系数确定。泥沙扩散系数可以由泥沙沉速和悬沙浓度的垂向梯度反演得到。既往研究大多直接给出泥沙扩散系数的结果,对于不同反演计算方法间结果差别的研究较少。本研究汇总了已有振荡流层移输沙试验数据,采用曲线拟合方法和直接差分方法计算了相应的泥沙扩散系数,研究表明两种方法得到的计算结果在垂向位置z 0.15 m处差异不大,随着垂向位置的升高,差分方法的计算结果略微大于拟合方法。考虑到拟合方法可以得到连续的泥沙扩散系数垂向分布,本研究推荐使用幂函数形式的曲线拟合方法求解悬移泥沙扩散系数。基于此,对比分析了层移输沙悬沙层泥沙扩散系数随泥沙粒径、振荡流周期、均方根流速和振荡流类型等物理参数的变化规律。在纯振荡流层移输沙条件下,泥沙扩散系数随泥沙粒径的增大而增大,而振荡流周期和均方根流速几乎不影响泥沙扩散系数。在振荡流和定常流共同作用下,泥沙扩散系数受振荡流周期和定常流流速的影响,泥沙扩散系数随着振荡流周期的增大或定常流流速的减小而增大。  相似文献   

7.
A 1DV-RANS diffusion model is used to study sand transport processes in oscillatory flat-bed/sheet flow conditions. The central aim is the verification of the model with laboratory data and to identify processes controlling the magnitude and direction (‘onshore’/‘offshore’) of the net time-averaged sand transport. The model is verified with a large series of measured net sand transport rates, as collected in different wave tunnels for a range of wave-current conditions and grain sizes. Although not all sheet flow details are represented in the 1DV-model, it is shown that the model is able to give a correct representation of the observed trends in the data with respect to the influence of the velocity, wave period and grain diameter. Also detailed mean sediment flux profiles in the sheet flow layer are well reproduced by the model, including the direction change from ‘onshore’ to ‘offshore’ due to a difference in grain size from 0.34 mm (medium sand) to 0.13 mm (fine sand). A model sensitivity study with a selected series of net transport data shows that the stirring height of the suspended sediment εs/ws strongly controls the magnitude and direction of the net sediment transport. Inclusion of both hindered settling and density stratification appears to be necessary to correctly represent the sand fluxes for waves alone and for waves + a superimposed current. The best agreement with a large dataset of net transport measurements is obtained with the 1DV-RANS model in its original settings using a Prandtl–Schmidt number σρ = 0.5.  相似文献   

8.
To predict sediment transport under oscillatory sheet flow condition, especially for fine sand, is still a challenging research subject in coastal engineering. This paper describes a newly-developed numerical model based on two-phase theory with the use of a one-equation turbulence closure, and its applications in predicting fine sediment suspension in near-prototype oscillatory sheet flow conditions. Model results were compared with comprehensive laboratory measurements of flow velocity and sediment concentration under both symmetrical and asymmetrical oscillatory sheet flows from a large-scale water tunnel. Good agreements between the model results and measurements were achieved and the results demonstrated that the model is capable of reproducing detailed characteristics of sediment entrainment process in the sheet flow regime. The comparisons also revealed the fact that the concentration peaks at flow reversal is associated with the strong vertical sediment transport flux in the pickup layer, which has been widely observed in many laboratory experiments. The effects of flow reversal events on total sediment transport were also discussed.  相似文献   

9.
A large number of studies have been done dealing with sinusoidal wave boundary layers in the past. However, ocean waves often have a strong asymmetric shape especially in shallow water, and net of sediment movement occurs. It is envisaged that bottom shear stress and sediment transport behaviors influenced by the effect of asymmetry are different from those in sinusoidal waves. Characteristics of the turbulent boundary layer under breaking waves (saw-tooth) are investigated and described through both laboratory and numerical experiments. A new calculation method for bottom shear stress based on velocity and acceleration terms, theoretical phase difference, φ and the acceleration coefficient, ac expressing the wave skew-ness effect for saw-tooth waves is proposed. The acceleration coefficient was determined empirically from both experimental and baseline kω model results. The new calculation has shown better agreement with the experimental data along a wave cycle for all saw-tooth wave cases compared by other existing methods. It was further applied into sediment transport rate calculation induced by skew waves. Sediment transport rate was formulated by using the existing sheet flow sediment transport rate data under skew waves by Watanabe and Sato [Watanabe, A. and Sato, S., 2004. A sheet-flow transport rate formula for asymmetric, forward-leaning waves and currents. Proc. of 29th ICCE, ASCE, pp. 1703–1714.]. Moreover, the characteristics of the net sediment transport were also examined and a good agreement between the proposed method and experimental data has been found.  相似文献   

10.
Some observations were carried out to understand the structure of the vertical residual flow in Kasado Bay. The results of current measurements at three points in the lower layer indicated that a horizontal counterclockwise tidal residual circulation converges in the lower layer. The velocity of upward residual flow was estimated to be about 4.5×10–3 cm s–1. The distributions of water temperature, salinity and grain size in the sediment support the existence of this upward motion.  相似文献   

11.
A simple conceptual formulation to compute seabed shear stress due to asymmetric and skewed waves is presented. This formulation generalizes the sinusoidal wave case and uses a variable friction factor to describe the physics of the boundary layer and to parameterize the effects of wave shape. Predictions of bed shear stresses agree with numerical computations using a standard boundary layer model with a kε turbulence closure. The bed shear stress formulation is combined with a Meyer-Peter and Müller-type formula to predict sheet flow bedload transport under asymmetric and skewed waves for a horizontal or sloping bed. The predictions agree with oscillatory water tunnel measurements from the literature.  相似文献   

12.
Studies of mixing were done at the northern flank of Georges Bank in the summer and autumn of 1988. Two time-series of the evolution and intensity of microstructure were examined over a tidal period in the context of tidal forcing and the evolution of the density and velocity field at the site. From the CTD, ADCP and microstructure observations (EPSONDE) on Georges Bank, several interesting features of the mixing processes were found. High dissipation and diffusivity regions appear near the bottom of the Bank. Turbulence near the bottom is highest in intensity and reaches farthest from the bottom at peak tidal flow and diminishes in intensity and vertical extent as the flow decreases. The thickness of the bottom turbulent layer has its maximum value when the flow is strongest and the stratification is weakest. Characterization of the dissipation rate and turbulent diffusivities in respect to buoyancy frequency N, current shear S, Richardson Number Ri and ε/νN2 was done. Dissipation and χT showed little dependence on shear or N2 but decreased at larger Ri. χt was found to be higher in regions of higher N2 and increased as ε/νN2 increased. KT, K and Kν, were all highest near the bottom in excess of 10−2m2s−1 and decreased towards the surface. There was little suggestion of a dependence of mixing efficiency on S2, Ri or ε/νN2, but some indication that Γ decreases with decreasing N2.  相似文献   

13.
《Coastal Engineering》1999,36(2):87-109
In this paper, a two-phase flow model is presented which simulates the fluid and sediment motions in the sheet flow regime on a flat bed under oscillatory flow conditions. The model is developed based on the continuity equations and linearised momentum equations for the fluid and sediment phases, respectively. All major forcing terms such as the intergranular stresses and the turbulent stress are included in the model. From the detailed computations and comparison with the available laboratory data it has been demonstrated that the model is capable of predicting fairly accurately both flow kinematics and sediment concentrations. In particular, the model predicts that the well known phenomenon of fluid velocity over-shoot that exists in clear water also appears in the case of lighter sediments but vanishes when the materials are heavier, which is in perfect accord with the experimental observations considered.  相似文献   

14.
The erosion depth and the sheet flow layer thickness represent two characteristic parameters for transport processes in oscillatory sheet flow. Formulas for these parameters under regular waves have been applied to obtain characteristic statistical values under random waves. The applicability of the method for practical purposes is illustrated by two examples using data typical for field conditions at water depths of 70 m (Ekofisk location in the North Sea) and 15 m, respectively. Two fictive storms based on the Dohmen-Janssen and Hanes [Dohmen-Janssen, C.M., Hanes, D.M., 2005. Sheet flow and suspended sediment due to wave groups in a large wave flume. Cont. Shelf Res. 25, 333–347] data from large scale wave flume tests have also been utilized to demonstrate how the return period of the sheet flow layer thickness observed in their experiments can be estimated.  相似文献   

15.
《Coastal Engineering》2005,52(9):745-770
New experiments were carried out in the Large Oscillating Water Tunnel of WL|Delft Hydraulics (scale 1:1) using asymmetric 2nd-order Stokes waves. The main aim was to gain a better understanding of size-selective sediment transport processes under oscillatory plane-bed/sheet-flow conditions. The new data show that for uniform sand sizes between 0.2 < D < 1.0 mm, measured net transport rates are hardly affected by the grain size and are proportional to the third-order velocity moment. However for finer grains (D = 0.13 mm) net sand transport rates change from the ‘onshore’ direction into the ‘offshore’ direction in the high velocity range. A new measuring technique for sediment concentrations, based on the measurement of electro-resistance (see [McLean, S.R., Ribberink, J.S., Dohmen-Janssen, C.M. and Hassan, W.N.M., 2001. Sediment transport measurements within the sheet flow layer under waves and currents. J. Waterw., Port, Coast., Ocean Eng., ISSN 0733-950X]), was developed further for the improved measurement of sediment dynamics inside the sheet-flow layer. This technique enabled the measurements of particle velocities during the complete wave cycle. It is observed that for long period waves (T = 12.0 s), time-dependent concentrations inside the sheet-flow layer are nearly in phase with the time-dependent flow velocities. As the wave period decreases, the sediment entrainment from the bed as well as the deposition process back to the bed lags behind the wave motion more and more. The new data show that size-gradation has almost no effect on the net total transport rates, provided the grain sizes of the sand mixture are in the range of 0.2 < D < 1.0 mm. However, if very fine grains (D = 0.13 mm) are present in the mixture, net total transport rates of graded sand are generally reduced in comparison with uniform sand with the same D50. The transport rates of individual size fractions of a mixture are strongly influenced by the presence of other fractions in a mixture. Fine particles in sand mixtures are relatively less transported than in that uniform sand case, while the opposite occurs for coarse fractions in a mixture. The relative contribution of the coarse grains to the net total transport is therefore larger than would be expected based on their volume proportion in the original sand mixture. This partial transport behaviour is opposite to what is generally observed in uni-directional (e.g. river) flows. This is caused by vertical sorting of grain sizes in the upper bed layer and in the sheet flow and suspension layers. Kinematic sorting is believed to be responsible for the development of a coarse surface layer on top of a relatively fine sub-layer, providing in this way a relatively large flow exposure for the coarser sizes. Furthermore fine grains are suspended more easily than coarse grains to higher elevations in the flow where they are subject to increasing phase-lag effects (settling lags). The latter also leads to reduced net transport rates of these finer sizes.  相似文献   

16.
In this paper, the characteristics of the bottom boundary layer flow induced by nonlinear, asymmetric shoaling waves, propagating over a smooth bed of 1/15 uniform slope, is experimentally investigated. Flow visualization technique with thin-layered fluorescent dye was first used to observe the variation of the flow structure, and a laser Doppler velocimeter was then employed to measure the horizontal velocity, U.The bottom boundary layer flow is found to be laminar except within a small region near the breaking point. The vertical distribution of the phase-averaged velocity U at each phase is non-uniform, which is directly affected by the mean velocity, . The magnitude of increases from zero at the bottom to a local positive maximum at about z/δ2.02.5 (where z is the height above the sloping bottom and δ is the Stokes layer thickness), then decreases gradually to zero at z/δ6.07.0 approximately, and finally becomes negative as z/δ increases further. Moreover, as waves propagate towards shallower water, the rate of increase in the maximum onshore oscillating velocity component is greater than that of the offshore counterpart except near the breaking point. The free stream velocities in the profiles of the maximum onshore and offshore oscillating velocity components, and are found to appear at z/δ≥6.0. This implies that, if the Stokes layer thickness is used as a length scale, the non-dimensionalized boundary layer thickness remains constant in the pre-breaking zone. Although is greater than and the asymmetry of the maximum free stream velocities (i.e. ) increases with decrease of water depth, a universal similar profile can be established by plotting z/δ versus ( ) or ( ). The final non-dimensional profile is symmetric and unique for the distributions of the maximum onshore and offshore oscillating velocity components within the bottom boundary layer, which are induced by nonlinear, asymmetric shoaling waves crossing the pre-breaking zone.  相似文献   

17.
本文用了一个可考虑相位差作用和波浪边界层非对称性的瞬态理论模型和一个两相紊流模型共同研究非对称歪斜波引起的片流输沙现象。为了解速度偏度和加速度偏度对输沙通量和输沙率的贡献,两相流模型为理论模型提供了必要的相位超前、瞬时侵蚀深度和边界层的发展过程。理论模型研究显示了由速度偏度和加速度偏度引起的向岸阶段和离岸阶段的泥沙运动非对称性,解释了净输沙的产生原因。在以往的非对称歪斜波片流输沙研究中,净输沙的产生主要被归结于相位差作用。本文的研究则表明了非对称的边界层发展所产生的净流量和动床面效应在净输沙产生过程中的比相位差作用更为重要。  相似文献   

18.
The stability of a uniformly sloped conventional rubble mound breakwater defenced by a seaward submerged reef is investigated using physical model studies. Regular waves of wide ranging heights and periods are used. Tests are carried out for different spacings between two rubble mound structures (X/d=2.5–13.33) and for different relative heights (h/d=0.625–0.833) and relative widths (B/d=0.25–1.33) of the reef. It is observed that a reef of width (B/d) of 0.6–0.75 constructed at a seaward distance (X/d) of 6.25–8.33 breaks all the incoming waves and dissipates energy and protects the breakwater optimally.  相似文献   

19.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

20.
At high bed shear stress sheet flows often occur in coastal waters in which high-concentration bedload sediments are transported in a thin layer near the bed. This paper firstly constructs a theoretical model (partial differential equations, PDEs) for the intense transport of non-cohesive bedload sediments by unidirectional currents and then seeks a special solution to the PDEs to determine the thickness of the bedload particle–water mixture, which could serve as the “reference height” that is often invoked in numerical computation and simulation of suspended sediment transport in turbulent flows. Moreover, a modified formula is presented to determine the “reference concentration”. Using a “uch” approach the present study derives a 1D formula for predicting bedload transport rate in sheet flows driven by asymmetric waves, with the help of a novel formula for evaluating wave friction factor. The new bedload formula can generically take into account slope angle (positive and negative), wash load concentration in the driving water flow and other factors that affect bedload transport rate. It compares well with measured data in a large-scale wave flume [Dohmen-Janssen, C.M., Hanes, D.M., 2002. Sheet flow dynamics under monochromatic non-breaking waves. Journal of Geophysical Research, 107(C10), 1301–1321], a large-scale oscillatory water tunnel [ Hassan, W.N., Ribberink, J.S., 2005. Transport processes of uniform and mixed sands in oscillatory sheet flow. Coastal Engineering, 52, 745–770] and in a swash zone of natural beach [Masselink, G., Hughes, M.G., 1998. Field investigation of sediment transport in the swash zone. Continental Shelf Research, 18, 1179–1199].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号