首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
较为详细地介绍了基于能量平衡方程的第三代近岸海浪数值模式SWAN(Simulation Waves Nearshore)及其包含的物理过程(风生浪、底摩擦、白浪耗散、深度诱导波破碎、非线性波-波相作用等),并利用该模式对影响杭州湾-长江口沿岸海域的一次台风浪过程进行了模拟研究:模式所需风场由藤田台风风场模型嵌入对应台风特征等压线,并对相应时段的NCAR/NCEPT资料、单站资料进行同化后提供;利用自嵌套的方式提供波谱边界条件;模式模拟的结果与实际海浪观测资料相符较好,在此基础上,研究了底摩擦、深度诱导波破碎、三波相互作用等物理过程联合对近岸台风浪的影响,初步认识了它们在近岸台风浪生成、传播过程中的重要作用。  相似文献   

2.
基于加密的非结构三角网格,以Holland模型风场叠加美国国家环境预报中心(NCEP)海面风场构造的合成风场驱动第三代浅水波浪数值模型(SWAN)对2017年影响闽东海域的“纳沙”和“泰利”台风过程进行数值模拟,并运用浮标站的实测数据对模拟结果进行验证.结果表明,模型计算的风速、有效波高与实测值符合较好,合成风场能较好地模拟台风期间的风速变化过程,SWAN模式能够合理地再现闽东沿海台风浪的时空分布特征.由模拟结果可见:台风“纳沙”中心越过台湾岛进入台湾海峡北部海面,受海峡地形的约束,其波浪场呈NE—SW向椭圆状分布,北部海域的浪高大于南部,闽东沿海遍布大范围的巨浪到狂浪;超强台风“泰利”未登陆闽东,当其台风中心与大陆的距离最近时,海面波浪场分布与台风风场结构一致,台风中心附近海域为14 m以上的怒涛区,巨浪遍布于闽东沿海.研究结果可为闽东沿海台风浪灾害预警和应急管理提供技术支撑和参考依据.  相似文献   

3.
厦门湾台风浪场数值模拟   总被引:1,自引:0,他引:1  
利用国际上先进的第3代海浪模式SWAN,充分考虑风能量输入、白浪效应、水深诱导的波浪破碎、底摩擦、波一波间的非线性相互作用等物理过程,以0604号“碧利斯”台风为例,模拟了厦门湾台风浪场的分布特征。将数值模拟结果与浮标测站实测资料对比分析,结果表明台风浪高模拟值与实际台风资料相符较好,可以为该海域台风浪的模拟提供较好的参考。  相似文献   

4.
以QSCAT/NCEP混合风资料和Myers经验模型风场构造台风风场,并以之作为驱动风场,建立一个基于第三代海浪模式SWAN的两重嵌套台风浪数值模拟模型。以0601号台风珍珠为例,对南中国海至广东的台风浪进行数值模拟研究。将数值模拟结果与台风期间Jason-1卫星高度计观测资料和近岸浮标实测资料(波高、波向和波周期)作了较为详细地比较,并分析台风浪要素的时空分布。结果显示台风浪要素的数值模拟值与实测值吻合良好,表明SWAN模型能够较好地再现大洋和近岸台风浪的时间发展过程和空间分布特征。  相似文献   

5.
基隆港台风浪特征分布数值模拟分析   总被引:2,自引:0,他引:2  
基于修正的Holland台风模型风场,在同化QuikScat/NCEP混合风场基础上,结合高分辨率水深和高精度岸线资料,采用第三代近岸海浪模式SWAN,对影响基隆港邻近海域的两类典型台风过程引起的台风浪进行了数值模拟分析。模拟的两次台风过程中,西北型台风0715号和转向型台风0424号的有效波高与同一时段T/P卫星高度计资料波高的平均相对误差分别为6.5%和5.6%,相关系数分别达到0.972和0.902,台风浪个例模拟精度较高,可为基隆港及其邻近海域台风浪模拟与预报提供一种有效的方法。  相似文献   

6.
基于加密的非结构三角网格,以Holland模型风场叠加美国国家环境预报中心(NCEP)海面风场构造的合成风场驱动第三代浅水波浪数值模型(SWAN)对2017年影响闽东海域的"纳沙"和"泰利"台风过程进行数值模拟,并运用浮标站的实测数据对模拟结果进行验证.结果表明,模型计算的风速、有效波高与实测值符合较好,合成风场能较好地模拟台风期间的风速变化过程,SWAN模式能够合理地再现闽东沿海台风浪的时空分布特征.由模拟结果可见:台风"纳沙"中心越过台湾岛进入台湾海峡北部海面,受海峡地形的约束,其波浪场呈NE—SW向椭圆状分布,北部海域的浪高大于南部,闽东沿海遍布大范围的巨浪到狂浪;超强台风"泰利"未登陆闽东,当其台风中心与大陆的距离最近时,海面波浪场分布与台风风场结构一致,台风中心附近海域为14 m以上的怒涛区,巨浪遍布于闽东沿海.研究结果可为闽东沿海台风浪灾害预警和应急管理提供技术支撑和参考依据.  相似文献   

7.
台湾海峡及厦门湾台风浪场数值模拟   总被引:2,自引:0,他引:2  
本文利用国际上先进的第三代海浪模式SWAN,在充分考虑风能量输入、白浪效应、水深诱导的波浪破碎、底摩擦、波-波间的非线性相互作用等物理过程。以0604号台风"碧利斯"为例,通过嵌套计算方式,模拟了台湾海峡及厦门湾台风浪场的分布特征。将数值模拟结果与浮标测站实测资料对比分析,结果表明台风浪高模拟值与实际台风资料相符较好,可以为该海域台风浪的模拟提供较好的参考。  相似文献   

8.
采用NCEP-FNL(Final Operational Global Analysis)再分析风场资料及WW3(WAVEWATCH Ⅲ)海浪模式对2015年连续发生的1509号台风"灿鸿"、1510号台风"莲花"和1511号台风"浪卡"进行数值模拟。通过与卫星高度计资料和浮标观测资料对比,验证了模拟结果的有效性,并分析台风浪的特征。结果表明:采用再分析风场资料驱动WW3海浪模式,较好地模拟了3个台风影响下西北太平洋海浪场的分布和演变特征;模拟波高与遥感的轨道波高资料相关性超过0.7,平均相对误差小于0.23,风速误差是造成模拟误差的主要原因;台风浪的大小不仅取决于台风强度,还受海域的影响。近海海域由于海岸与岛屿的阻碍,波浪能量频散受到抑制,易产生局地巨浪;而深海大洋开阔海域,易于台风浪能量传播。本文相关结论为台风浪的定量预报及防灾减灾提供有益参考。  相似文献   

9.
选取2004~2014年登陆和影响海陵湾附近海域四种典型路径的代表台风作为研究对象,运用SWAN41.01版本,通过大区粗网格、小区细网格两重嵌套的方法对台风影响过程所产生的台风浪进行较高分辨率的模拟研究,结合海陵湾不同位置的地形特征及台风中心与海陵湾的相对位置分析台风浪分布特征.分别利用附近海域大万山、闸坡和硇洲海洋站海浪观测值与模拟结果进行检验.模拟结果表明:模式计算结果与实测结果吻合性较好.台风中心位于海陵湾邻近海域的不同位置,台风强度及生命历程的不同,所引起的台风浪有效波高极值及持续时间都有着较大的差异,而不同的路径的台风引起的台风浪场分布也呈现出明显不同的特征.本研究可以为整个海陵湾邻近海域台风浪分布特征的了解与认识提供较好的参考.  相似文献   

10.
台风浪灾害在山东半岛沿海时常发生,对人类生命财产和基础设施构成很大威胁,因此,对山东半岛海域台风浪的危险性分析具有重要的现实意义。本研究使用ADCIRC+SWAN耦合数值模式采用Holland模型风场与NCEP再分析风场组合的风场驱动,对1979—2018年36次台风过境期间的海浪过程进行了模拟。以台风过境时最大有效波高及历时频数作为危险性评价指标,给出了山东半岛近岸台风浪强度等级分布、历时频数分布以及危险性指数分布。研究结果显示,山东半岛北部为台风浪低危险区,台风浪强度等级低且历时短;南部二级强度(有效波高范围为1.3—2.5m)以上台风浪发生较为频繁,危险性高于北部;东部台风浪强度可以达到四级(有效波高4m以上),危险性最高。  相似文献   

11.
人工神经网络技术在台风浪预报中的应用   总被引:4,自引:0,他引:4       下载免费PDF全文
利用人工神经网络中的BP算法,结合南海硇洲岛海区近30年的台风及台风浪资料,经预期因子的选择并作对比试验,建立了本海区较为理想的台风浪人工神经网络预报模型。结果表明:人工神经网络方法在台湾浪的预报上,有较好的拟合历史台风浪高的能力,利用该模型对台风浪高的预报也达到了一定的精度。为实际台风浪浪的预报增加了新方法、新思路。  相似文献   

12.
台风引起的海浪灾害对我国黄、渤海沿岸影响巨大,严重威胁相关区域人民群众生命财产安全。本文主要利用ERA5(the fifth generation European Center for Medium-Range Weather forecasts atmospheric reanalysis of the global climate)风场研究了两类不同移动路径下的台风(1909号台风“利奇马”和1109号台风“梅花”)在黄、渤海区域的海浪场的时空分布特征及风-浪成长关系。结果表明:两个台风引起的海浪的有效波高空间分布明显不同,波高的分布和风速对应,而海浪周期与风速、波高的分布无明显相关性,波向较风向偏于台风移动方向且两者偏差较大;两个台风进入黄海之前就形成一个从黄海向渤海的“涌浪舌”。海浪成分方面,台风“利奇马”引起的沿海区大浪主要是风浪,而台风“梅花”移动路径的右侧以风浪为主,左侧则主要是涌浪;通过建立无因次波高与无因次周期的幂律关系、以及有效波高关于风速的二次多项式变化关系,研究了风-浪成长特性,结果发现,台风浪的成长特性与台风过程关系不明显,但与所处水域的水深和海底地形地貌有关,表现为两个台风在黄海区域的台风浪成长较渤海区域更为充分。  相似文献   

13.
本文以Geosat卫星高度计1987年8月11日在西太平洋海域上的-上升轨道测得的风、浪资料为基础,统计分析了8708号台风影响下的海面风速和海浪特征.结果显示,此次台风影响下的海面风速和海浪波高的空间分布具有相对台风中心近似对称的结构特征,但在台风内区,台风移动方向的右方风速较左方风速增加较快,同时在台风外围,右方风速较左方风速衰减也较快;有效波高没有明显的内、外区结构,且左、右方波高随距离变化也呈不同的衰减率;风速与有效波高的关系在台风中心左右也呈现明显的不同;本文给出了台风的风速及波高随相对台风中心距离变化的经验关系式,以及合风风速与波高的经验关系式等.  相似文献   

14.
以高精度再分析风场为驱动,利用SWAN模式模拟了台风“达维”Damrey(2005)经过北部湾海域时的波浪场。通过与实测的风和波浪实测对比发现,波浪后报结果与实测结果符合较好。文章给出了台风浪期间波高、周期、波长和波向等要素的分布特征,讨论了以台风眼为中心不同海域的波浪方向谱特征。本文最后分析了台风期间实测波浪能谱的变化特征。  相似文献   

15.
邓丹  周泉  马磊  李锐祥 《海洋与湖沼》2023,54(6):1529-1536
南海北部海域夏季台风活动频繁,对海上生产活动和人民生命财产安全造成极大威胁,由于台风路径的不确定性,其中心附近区域的风浪观测资料十分稀少。中国气象局(China Meteorological Administration, CMA)热带气旋最佳路径数据显示2017年10月强台风“卡努”中心经过南海北部陆坡的SF301浮标,该浮标完整记录了台风过境的风浪数据。利用浮标观测资料,分析了强台风“卡努”过境期间的风和海浪特征。观测结果表明,“卡努”经过浮标时,中心气压为959.9 hPa,风速随时间呈双峰分布,前、后眼壁区的10 min平均风速分别为30.2 m/s和24.9 m/s, 1 s极大风速分别为44.2和38.6 m/s。海浪以风浪为主,观测有效波高和最大波高最大值分别为10.8和14.3 m,滞后最大风速30 min,波向和风向变化趋势一致。台风过境期间,有效波高与海面10 m风速接近线性关系,非台风期间二者呈二次多项式关系。海浪无因次波高和周期呈幂指数关系,无论是台风期间还是非台风期间二者关系十分接近Toba提出的3/2指数律。  相似文献   

16.
本文基于三维波流耦合FVCOM-SWAVE数值模式,采用Jelesnianski参数化风场与再分析数据集ECMWF风场数据叠加而成的合成风场作为外力驱动力,模拟了1818号"温比亚"台风引起北黄海及渤海海域风暴潮增减水及波浪的生长与消减过程,进而分析该海域在"温比亚"台风作用下波浪对流速垂向分布的影响。研究结果表明:合成风场得到的风速最大值及出现时刻与实测数据符合较好,合成风场较为合理,能够为模拟波流耦合机制下海域水动力变化提供准确的风场条件;几个测站的风暴潮增水模拟结果与实测数据较为吻合,FVCOM-SWAVE耦合系统合理地再现了"温比亚"台风在黄渤海引发的风暴潮增水以及台风浪过程。此外,计算结果显示"温比亚"期间黄渤海海域最大有效波高分布于台风中心外围,且位于台风前进方向上,波浪最大有效波高值与台风强度有关;在台风过境期间,波流相互作用对近岸海域流速的垂向分布具有一定影响,考虑波流相互作用可有效提高台风风暴潮数值模拟精度。研究结果对台风灾害预报、防灾减灾及港口建筑选址具有一定的参考意义。  相似文献   

17.
史剑  蒋国荣 《海洋与湖沼》2015,46(6):1255-1262
风浪状态参数常用于对海面粗糙度的参数化。中等风速条件下考虑风浪状态参数影响的海面粗糙度参数化方案常存在自相关效应,本文通过分析实测数据得到了无量纲粗糙度随波陡变化的参数化方案,该方案能够有效去除自相关效应;高风速下风浪状态对海面粗糙度仍存在影响,文中基于新得出的中等风速下的海面粗糙度参数化方案,考虑海面飞沫悬浮层的影响,建立了适用于高风速条件下的海面粗糙度参数化方案,该海面粗糙度方案同样考虑了波陡的作用,将该方案计算出的理论值与实测数据进行比对,发现随着波陡的变化,理论值基本涉及测量值的覆盖范围,说明新建立的高风速条件下海面粗糙度方案对海面风浪状态具有较好的敏感性,且该方案能够较合理地描述海气界面之间动量传输。将新提出的适用于高风速下的海面粗糙度方案加入到海浪数值模式中,模拟飓风Ivan产生的台风浪,利用浮标数据进行验证,结果显示模拟的有效波高相对模式默认方案具有较高的精度,说明采用本文新建立的适合高风速的海面粗糙度方案能够改进海浪模式的台风浪有效波高模拟结果。  相似文献   

18.
Owing to the fact that the wind speed and direction of typhoon vary rapidly with time and space in typhoon fetch; the nearer to the typhoon eye the greater the wind velocity, and the shorter the wind fetch the smaller the wind time,as a result,the more difficult for the wind wave to fully grow. Hence.in typhoon wave numerical calculation it is impossible to use the model for a fully grown wave spectrum. Lately, the author et at. presented a CHGS method for numerical forecasting of typhoon waves, where a model for the growing wave spectrum was set up (see Eq. (2) in the text). The model involves a parameter indicating the growing degree of wind wave, i. e. ,the mean wave age β. When βvalue is small, the wave energy is chiefly concentrated near the peak frequency, so that the spectral peak gets high and steep; with the increase of β the spectral shape gradually gets lower and gentler; when β=Ⅰ, the wave fully grows, the growing spectrum becomes a fully grown P-M spectrum. The model also shows a spect  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号