首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the development from syn-rift to spreading in the South China Sea (SCS) is important in elucidating the western Pacific's tectonic evolution because the SCS is a major tectonic constituent of the many marginal seas in the region. This paper describes research examining the transition from rifting to spreading along the northern margin of the SCS, made possible by the amalgamation of newly acquired and existing geophysical data. The northernmost SCS was surveyed as part of a joint Japan-China cooperative project (JCCP) in two phases in 1993 and 1994. The purpose of the investigation was to reveal seismic and magnetic characteristics of the transitional zone between continental crust and the abyssal basin. Compilation of marine gravity and geomagnetic data of the South China Sea clarify structural characteristics of its rifted continental and convergent margins, both past and present. Total and three component magnetic data clearly indicate the magnetic lineations of the oceanic basin and the magnetic characteristics of its varied margins. The analyses of magnetic, gravity and seismic data and other geophysical and geological information from the SCS led up to the following results: (1) N-S direction seafloor spreading started from early Eocene. There were at least four separate evolutional stages. Directions and rates of the spreading are fluctuating and unstable and spreading continued from 32 to 17 Ma. (2) The apparent difference in the present tectonism of the eastern and western parts of Continent Ocean Boundary (COB) implies that in the east of the continental breakup is governed by a strike slip faulting. (3) The seismic high velocity layer in the lower crust seems to be underplated beneath the stretched continental crust. (4) Magnetic anomaly of the continental margin area seems to be rooted in the uppermost sediment and upper part of lower crust based on the tertiary volcanism. (5) Magnetic quiet zone (MQZ) anomaly in the continental margin area coincides with COB. (6) The non-magnetic or very weakly magnetized layer is probably responsible for MQZ. One of the causes of demagnetization of the layer is due to hydrothermal alteration while high temperature mantle materials being underplated. Another explanation is that horizontal sequences of basalt each with flip-flop magnetization polarity cancel out to the resultant magnetic field on the surface. We are currently developing a synthetic database system containing datasets of seismicity, potential field data, crustal and thermal structures, and other geophysical data to facilitate the study of past, contemporary and future changes in the deep sea environment around Japan; i.e. trench, trough, subduction zones, marginal basins and island arcs. Several special characteristics are an object-oriented approach to the collection and multi-faceted studies of global data from a variety of sources.  相似文献   

2.
The continental margins of the southwest subbasin in the South China Sea mark a unique transition from multi-stages magma-poor continental rifting to seafloor spreading. We used reflection and refraction profiles across the margins to investigate the rifting process of the crust. Combining with the other seismic profiles acquired earlier, we focused on the comparative geological interpretation from the result of multichannel seismic analysis and wide-angle seismic tomography. Our result provides the evidence of upper crustal layer with abundant fractures below the acoustic basement with a P-wave velocity from 4.0 to 5.5 km s?1. It indicates extensive deformation of the brittle crust during the continental rifting and can make a good explanation for the observed extension discrepancy in the rift margins of the South China Sea. The seismic chronostratigraphic result shows the possibility of the intra-continental extension center stayed focused for quite a long time in Eocene. Additionally, our evidence suggested that continental margin of the southwest subbasin had experienced at least three rifting stages and the existence of the rigid blocks is an appropriate explanation to the asymmetric rifting of the South China Sea.  相似文献   

3.
Prior to extension of the lithosphere in the Eurasia Basin, the Yermak Plateau was an element of the Eurasian Arctic margin. Extension of the Barents Sea shelf culminated gradually in rifting of the continental crust with separation of this block from the continent during Chrons C25r?C26n (57.656?59.237 Ma ago) and emplacement of numerous basic dikes, which could be responsible for the formation of high-amplitude magnetic anomalies on the Yermak Plateau. The investigation included reconstruction of axes in the breakup zones along peripheral continental fragments of Spitsbergen with determination of the Euler poles and angles of rotation, which describe the kinematics of this process. It is revealed that the difference between depths of conjugate isobaths can be as large as many tens of meters, which reflects the nonuniformly scaled slide of peripheral areas of the continental crust along the plane of the crustal-penetrating fault and, correspondingly, their different subsidence during rifting.  相似文献   

4.
The East Vietnam Boundary Fault Zone (EVBFZ) forms the seaward extension of the Red River Shear Zone and interacted with the extensional rift systems in basins along the Central Vietnamese continental margin. The structural outline of the central Vietnamese margin and the timing of deformation are therefore fundamental to understanding the development of the South China Sea and its relation to Indochinese escape tectonism and the India-Eurasia collision. This study investigates the structural and stratigraphic evolution of the Central Vietnamese margin in a regional tectonic perspective based on new 2-D seismic and well data. The basin fill is divided into five major Oligocene to Recent sequences separated by unconformities. Deposition and the formation of unconformities were closely linked with transtension, rifting, the opening of the South China Sea and Late Neogene uplift and denudation of the eastern flank of Indochina. The structural outline of the Central Vietnamese margin favors a hybrid tectonic model involving both escape and slab-pull tectonics. Paleogene left-lateral transtension over the NNW-striking EVBFZ, occurred within the Song Hong Basin and the Quang Ngai Graben and over the Da Nang Shelf/western Phu Khanh Basin, related to the escape of Indochina. East of the EVBFZ, Paleogene NE-striking rifting prevailed in the outer Phu Khanh Basin and the Hoang Sa Graben fitting best with a prevailing stress derived from a coeval slab-pull from a subducting proto-South China Sea beneath the southwest Borneo – Palawan region. Major rifting terminated near the end of the Oligocene. However, late stage rifting lasted to the Early Miocene when continental break-up and seafloor spreading commenced along the edge of the outer Phu Khanh Basin. The resulting transgression promoted Lower and Middle Miocene carbonate platform growth on the Da Nang Shelf and the Tri Ton High whereas deeper marine conditions prevailed in the central part of the basins. Partial drowning and platform retreat occurred after the Middle Miocene due to increased siliciclastic input from the Vietnamese mainland. As a result, siliciclastic, marine deposition prevailed offshore Central Vietnam during the Pliocene and Pleistocene.  相似文献   

5.
Rifting of continental margins is generally diachronous along the zones where continents break due to various factors including the boundary conditions which trigger the extensional forces, but also the internal physical boundaries which are inherent to the composition and thus the geological history of the continental margin. Being opened quite recently in the Tertiary in a scissor-shape manner, the South China Sea (SCS) offers an image of the rifting structures which varies along strike the basin margins. The SCS has a long history of extension, which dates back from the Late Cretaceous, and allows us to observe an early stretching on the northern margin onshore and offshore South China, with large low angle faults which detach the Mesozoic sediments either over Triassic to Early Cretaceous granites, or along the short limbs of broad folds affecting Palaeozoic to Early Cretaceous series. These early faults create narrow troughs filled with coarse polygenic conglomerate grading upward to coarse sandstone. Because these low-angle faults reactivate older trends, they vary in geometry according to the direction of the folds or the granite boundaries. A later set of faults, characterized by generally E–W low and high angle normal faults was dominant during the Eocene. Associated half-graben basement deepened as the basins were filling with continental or very shallow marine sediments. This subsequent direction is well expressed both in the north and the SW of the South China Sea and often reactivated earlier detachments. At places, the intersection of these two fault sets resulting in extreme stretching with crustal boudinage and mantle exhumation such as in the Phu Khanh Basin East of the Vietnam fault. A third direction of faults, which rarely reactivates the detachments is NE–SW and well developed near the oceanic crust in the southern and southwestern part of the basin. This direction which intersects the previous ones was active although sea floor spreading was largely developed in the northern part, and ended by the Late Miocene after the onset of the regional Mid Miocene unconformity known as MMU and dated around 15.5 Ma. Latest Miocene is marked by a regional basement drop and localized normal faults on the shelf closer to the coast. The SE margin of the South China Sea does not show the extensional features as well as the Northern margin. Detachments are common in the Dangerous Grounds and Reed Bank area and may occasionally lead to mantle exhumation. The sedimentary environment on the extended crust remained shallow all along the rifting and a large part of the spreading until the Late Miocene, when it suddenly deepened. This period also corresponds to the cessation of the shortening of the NW Borneo wedge in Palawan, Sabah, and Sarawak. We correlate the variation of margin structure and composition of the margin; mainly the occurrence of granitic batholiths and Mesozoic broad folds, with the location of the detachments and major normal faults which condition the style of rifting, the crustal boudinage and therefore the crustal thickness.  相似文献   

6.
The Cenozoic Yinggehai-Song Hong and Qiongdongnan Basins together form one of the largest Cenozoic sedimentary basins in SE Asia. Detail studying on the newly released regional seismic data, we observed their basin structure and stratigraphy are clearly different. The structure of the NW–SE elongation of the Yinggehai-Song Hong Basin is strongly controlled by the strike–slip faulting of steep Red River Fault. And the basement is covered by heavy sediments from the Red River. However, structures closely related with rifting are imagined on the seismic data from the Qiongdongnan Basin. This rifting and thinning on the northern continental margin of the South China Sea is necessary to be explained by the subduction of a Proto-South China Sea oceanic crust toward the NW Borneo block during the Eocene–Early Miocene. To test how the strike–slip faulting in the Yinggehai-Song Hong Basin and rifting in the Qiongdongnan Basin develop together in the northwest corner of the South China Sea, we reconstructed the tectonics of the northwest corner of the South China Sea and test the model with software of MSC MARC. The numerical model results indicate the South China Sea and its surrounding area can be divided into a collision-extrusion tectonic province and a Proto-South China Sea slab pull tectonic province as suggested in previous works. We suggested that offshore Red River Fault in the Yinggehai-Song Hong Basin is confirmed as a very important tectonic boundary between these two tectonic provinces.  相似文献   

7.
Several coeval volcanogenic complexes indicating synchronous volcanic events in the Sea of Japan and the Sea of Okhotsk are defined. Volcanics from different-age complexes of the Sea of Okhotsk show many features in common and are attributed to the Pacific type of calc-alkaline series. They were formed in geodynamic settings of the active continental margin and point to its origination on the continental crust of the fragmented Asian continent margin. The volcanic rocks developed in the Sea of Japan reflect different rifting stages. The initial stage was marked by an eruption of calc-alkaline lavas (Paleocene-Eocene complex). At the stage of the marginal-sea spreading, erupted volcanics of the middle Miocene-Pliocene complex were melted from the depleted mantle and magmatism terminated by an eruption of postspreading Pliocene-Holocene volcanics melted from the enriched mantle EM I. Along with the differences, the magmatism in the Sea of Japan and Sea of Okhotsk has some features in common. In both cases, the sialic component of the lithosphere substantially influenced the magma generation.  相似文献   

8.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

9.
The northern East China Sea Shelf Basin consists of three depressions (the Domi, Jeju, and Socotra Depressions), separated by basement highs or rises. Reconstruction of depth-converted seismic reflection profiles from these depressions reveals that the northern East China Sea Shelf Basin experienced two phases of rifting, followed by regional subsidence. Initial rifting in the Late Cretaceous was driven by the NW?CSE crustal stretching of the Eurasian plate, caused by the subduction of the Pacific plate beneath the plate margin. Major extension (~15 km) took place during the early phase of basin formation. The initial rifting was terminated by regional uplift in the Late Eocene-Early Oligocene, which was probably due to reorganization of plate boundaries. Rifting resumed in the Early Oligocene; the magnitude of extension was mild (<1 km) during this period. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the postrift phase of regional subsidence. Up to 2,600 m of sediments and basement rock were removed by erosion during and after the second phase of uplift. An inversion in the Late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Subsequent erosion removed about 900 m of sediments. The regional subsidence has dominated the area since the Late Miocene.  相似文献   

10.
日本海地质构造特征   总被引:3,自引:0,他引:3  
刘福寿 《海岸工程》1995,14(1):37-42
本文主要根据地质,地震,磁力,地热,重力等资料,分析了日本海的地质构造特征。日本海是一个广阔的边缘海,四周被大陆架所围。自东北至西南依次为日本,海盆,大和海脊,大和盆地及马海贫。大和海脊由陆壳物质组成,盆地中心则以洋壳为底。热流值高而变率小,说明日本海是一个成熟的弧后盆地,扩张停止于中新世。日本海在更新世最低海面时,与大洋交换断绝,沉积物中含碳比较丰富,这是一个罕见的特征。  相似文献   

11.
The southwestern margin of the Japan Arc evolved in the geodynamic regime of continental rifting during the Miocene–Pleistocene. This has been verified by broad manifestations of metasomatosis of mantle peridotites that underlie the lithosphere of the Japan Islands and by episodes of deep magmatism (kimberlites and melilitites) in the region. The high enrichment of deep melts in incompatible rare and rare earth elements is partially preserved in melts of regional basalts from smaller depths. In contrast, spreading basalts of the Sea of Japan and subduction basalts from the Nankai trench at the boundary with the Philippine Plate are extremely depleted in rare elements.  相似文献   

12.
南海区域岩石圈的壳-幔耦合关系和纵向演化   总被引:11,自引:2,他引:11  
南海区域岩石圈由地壳层和上地幔固结层两部分组成。具典型大洋型地壳结构的南海海盆区莫霍面深度为9~13km,并向四周经陆坡、陆架至陆区逐渐加深;陆缘区莫霍面一般为15~28km,局部区段深达30~32km,总体呈与水深变化反相关的梯度带;东南沿海莫霍面深约28~30km,往西北方向逐渐增厚,最大逾36km。南海区域上地幔天然地震面波速度结构明显存在横向分块和纵向分层特征。岩石圈底界深度变化与地幔速度变化正相关;地幔岩石圈厚度与地壳厚度呈互补性变化,莫霍面和岩石圈底界呈立交桥式结构,具有陆区厚壳薄幔—洋区薄壳厚幔的岩石圈壳-幔耦合模式。南海区域白垩纪末以来的岩石圈演化主要表现为陆缘裂离—海底扩张—区域沉降的过程,现存的壳-幔耦合模式显然为岩石圈纵向演化产物,其过程大致可分为白垩纪末至中始新世的陆缘裂离、中始新世晚期至中新世早期的海底扩张和中新世晚期以来的区域沉降等三个阶段。  相似文献   

13.
台西南盆地的构造演化与油气藏组合分析   总被引:14,自引:2,他引:14  
本文根据台西南盆地的地质、地球物理资料,对台西南盆地的地壳结构、基底特征、沉积厚度、断裂构造等基本地质构造特征^[1]作了研究,探讨了台西南盆地的构造发展演化及及油气藏组合。认为该盆地的构造演化为幕式拉张。幕式拉张可分为三大张裂幕,相应的热沉降作用使盆地在不同的张裂幕时期发展为断陷,裂陷,裂拗-拗陷。它们分别与板块作用下的区域构造运动阶段相对应,说明区域构造运动不但控制了盆地的发展演化,同时也制约  相似文献   

14.
东海陆架边缘的构造特征记录了有关冲绳海槽张裂过程的关键信息,对于进一步理解海槽的形成演化以及弧后张裂与弧-陆碰撞之间的相互作用至关重要。本文基于多道地震和重磁资料,分析了东海陆架边缘的地形和构造特征,并对冲绳海槽早期张裂过程、北西向断裂带的分隔控制作用、钓鱼岛隆起带南北构造差异和冲绳海槽的向西前展等问题进行了探讨。结果表明,冲绳海槽西侧陆坡存在的分段性,各分段在地形地貌、地层展布和构造特征等方面的不同,体现了其构造演化和现今构造活动性的差异。冲绳海槽中—北段的张裂始于陆架前缘坳陷,在晚中新世向东扩展至整个海槽,晚中新世至今以分散式张裂为主。北西向断裂带对东海陆架边缘不同分段的构造特征和构造活动起到了分隔控制和转换协调作用,控制了不同类型陆坡的形成和发育。受冲绳海槽在全宽度上向西前展的影响,钓鱼岛隆起带南段的基底隆起及其支撑的陆架边缘发生了破坏和沉降,形成基底起伏较大、地形崎岖不平的陆坡。  相似文献   

15.
The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500–600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene–Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.  相似文献   

16.
On the basis of new geophysical data acquired by the Federal Institute of Geosciences and Natural Resources (BGR) and the Polar Marine Geological Research Expedition (PMGRE) as well as existing data new geophysical maps were compiled for the Lazarev Sea and the Riiser-Larsen Sea between 10°W and 25°E. The new results are: – The drastic change in the strike direction of the volcanic Explora Wedge between longitudes 10°W and 5°W is accompanied with a gradual change from one major wedge, i.e. the Explora Wedge, into at least two wedge-shaped volcanic constructions, each manifested by a sequence of seaward-dipping reflectors in the seismic records. – The southern Lazarev Sea is best described as a continental margin affected by multiple rifting episodes accompanied with transient volcanism. – A distinct N80°E striking basement depression separates the volcanic-prone continental margin of the southern Lazarev Sea from oceanic crust upon which the Maud Rise rests. The southern scarp of the narrow depression was presumably aligned with the eastern scarp of the Mozambique Ridge during the Early Cretaceous. – The Astrid Ridge proper occupies the transition from the volcanic-prone continental margin of the Lazarev Sea to old oceanic crust of the Riiser -Larsen Sea, and it rests upon a large volcanic apron which covers the basement of the southwestern Riiser-Larsen Sea. – No evidence was found that prolific volcanism has affected the early opening of the Riiser-Larsen Sea. – The Lazarev Sea is a sediment-starved region.  相似文献   

17.
南海北缘新生代盆地沉积与构造演化及地球动力学背景   总被引:32,自引:0,他引:32  
南海北缘新生代沉积盆地是全面揭示南海北缘形成演化及与邻区大地构造单元相互作用的重要窗口。通过对盆地沉积-构造特征分析,南海北缘新生代裂陷过程显示出明显的多幕性和旋转性的特点。在从北向南逐渐迁移的趋势下,东、西段裂陷过程也具有一定的差异,西部裂陷活动及海侵时间明显早于东部,裂陷中心由西向东呈雁列式扩展。晚白垩世-早始新世裂陷活动应是东亚陆缘中生代构造-岩浆演化的延续,始新世中、晚期太平洋板块俯冲方向改变导致裂陷中心南移,印度欧亚板块碰撞效应是南海中央海盆扩张方向顺时针旋转的主要原因。  相似文献   

18.
Marine geological and geophysical data together with drilling information indicate that the North African passive continental margin has been subjected to extension and wrenching after it collided with the northern part of Sicily. The area of the Tripolitania Basin, Jarrafa Trough, Melita and Medina Bank and the Ragusa-Malta Plateau has formed part of a sinking passive margin since the dispersal of Gondwanaland at about 180 My ago as observed from geohistory diagrams. A record of rifting in a NW-SE direction accompanied by dextral shear along the southern troughs is observed in seismic reflection data. The rifting started during the Neocomian and lasted until the Eocene when activity became minor. A pre-Middle Miocene period of northward subduction of oceanic crust is inferred from the geology in NE Sicily. Uplift of the northern part of the African margin after collision in the Middle Miocene is seen in wells in southern Sicily. After the Messinian a rift and dextral shear zone established itself across the African Margin from the Strait of Sicily to the Medina Ridge in the lonian Basin. The zone is marked by up to 1.7 km deep grabens, narrow active wrench faulted channels, volcanic fissures and local uplifted ‘Keilhorsts’ such as Malta. This zone, which varies in width from 100 to 35 km, forms the southern boundary of a microplate which includes Sicily. We speculate that the present motion of this microplate is partly due to the eastward movement of the Calabrian Arc with the Sicilian block over the last remaining oceanic lithosphere in the Eastern Mediterranean.  相似文献   

19.
We focus on the northern Ligurian margin, at the geological junction of the subalpine domain and the Ligurian oceanic basin, in order (1) to identify the location of the southern limit of the Alpine compressive domain during the Cenozoic, and (2) to study the influence of a compressive environment on the tectonic and sedimentary evolution of a passive margin.Based on published onshore and offshore data, we first propose a chronology of the main extensional and compressional regional tectonic events.High-resolution seismic data image the margin structure down to ∼3 km below seafloor. These data support that past rifting processes control the present-day margin structure, and that 2800-4000 m of synrift sediment was deposited on this segment of the margin in two steps. First, sub-parallel reflectors indicate sediment deposition within a subsident basin showing a low amount of extension. Then, a fan-shaped sequence indicates block tilting and a higher amount of extension. We do not show any influence of the Miocene Alpine compression on the present-day margin structure at our scale of investigation, despite the southern subalpine relief formed in the close hinterland at that time. The southern front of the Miocene Alps was thus located upslope from the continental margin.Finally, a comparison with the Gulf of Lions margin suggests that the tectonic influence of the Alpine compression on the rifting processes is restrited to an increase of the subsidence related to flexure ahead of the Alpine front, explaining abnormally high synrift thicknesses in the study area. The Alpine environment, however, has probably controlled the sedimentary evolution of the margin since the rifting. Indeed, sediment supply and distribution would be mainly controlled by the permanent building of relief in the hinterland and by the steep basin morphology, rather than by sea-level fluctuations, even during the Messinian sea-level low-stand.  相似文献   

20.
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号