首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Wave reflection by a vertical wall with a horizontal submerged porous plate   总被引:3,自引:0,他引:3  
By applying the linear water wave theory and the eigenfunction expansion method, the wave reflection by a vertical wall with a horizontal submerged porous plate is investigated in this paper. The numerical results, concerning the effects of the dimensionless plate length, the relative water depth, and the porous effect parameter of the plate on the wave loads on the plate and the wave height near the wall as well as the reflection coefficient, are discussed. It is found that the submerged plate increases the complexity of the phenomenon related to the wave reflection and refraction in the close region of the wall, and leads to the occurrence of the phenomenon of wave trapping. The results indicate that there may exist a process of focusing wave energy near the wall for small dimensionless porous effect parameters, whereas the increase of the dimensionless porous effect parameter decreases gradually the wave height until setdown occurs. The behavior of a larger plate with proper porosity is similar to that of a wave absorber which can significantly suppress not only the wave height above the plate but also the reflection waves. The ability of the porous plate to reduce the wave height on the wall surface is, in general, directly proportional to the dimensionless plate length and may be strongest for a proper value of the dimensionless porous effect parameter. It is also demonstrated that the wave loads on a porous plate are smaller than those on an impermeable plate.  相似文献   

2.
In this study,we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall.Modified time-dependent mild-slope equations,which involve parameters of the porous medium,were used to calculate the wave height transformation and the mean water level change around a submerged breakwater.The numerical solution is verified with experimental data.The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall.In contrast to cases without a seawall,the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall.Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater.We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.  相似文献   

3.
In this study, we investigated wave transformation and wave set-up between a submerged permeable breakwater and a seawall. Modified time-dependent mild-slope equations, which involve parameters of the porous medium, were used to calculate the wave height transformation and the mean water level change around a submerged breakwater. The numerical solution is verified with experimental data. The simulated results show that modulations of the wave profile and wave set-up are clearly observed between the submerged breakwater and the seawall. In contrast to cases without a seawall, the node or pseudo-node of wave height evolution can be found between the submerged breakwater and the seawall. Higher wave set-up occurs if the nodal or pseudo-nodal point appears near the submerged breakwater. We also examined the influence of the porosity and friction factor of the submerged permeable breakwater on wave transformation and set-up.  相似文献   

4.
人工柔性植被场中波浪衰减特性研究   总被引:2,自引:0,他引:2  
通过SWAN-VEG模型对波浪在刚性及柔性植被中传播的模拟计算结果发现,SWAN-VEG模型能较好的模拟刚性植被场对波能衰减的特性,而对于柔性植被场的情况,则缺少合适的对阻力系数的估算方法。因而在传统的植被消浪模型的基础上,通过引入有阻尼的受迫振荡模型,来考虑柔性植被在不同入射波浪作用下的晃动效果,引入柔性植物体在波浪力下的避让因子D(D为植物运动速度与水质点流速的相对值),通过转换关系式来反映植被的柔性对阻力系数CD影响。对未考虑植被晃动的SWAN-VEG模型进行了修改,用于模拟计算波浪在柔性植被场中的衰减,并采用人工柔性材料进行物理模型试验对计算结果进行对比验证。结果表明,考虑植被晃动影响的模拟结果明显好于不计植被晃动影响的情况,验证结果的相关系数从0.68提高至0.83。由此说明在进行柔性植物消浪效果的研究中需考虑柔性植被的晃动效应,同时发现植被晃动效果的强弱与植物材质的固有频率ωn、阻尼比γ、植被高度hv以及入射波要素等因素有关。  相似文献   

5.
蒋昌波  徐进  邓斌  陈杰  屈科 《海洋通报》2019,38(5):591-600
基于非静压单相流模型NHWAVE,设计不同的计算工况,系统研究了规则波与非规则波作用下,非淹没刚性植物的消波特性。将计算结果和实验数据进行对比分析,验证了非静压模型NHWAVE计算植物消波特性的准确性。进一步研究了波高、周期和水深等因素对植物消波特性的影响,探讨了植物消波特性与这些水动力因素的内在联系。结果表明:非淹没刚性植物的消波效率受波高和周期的影响较大,水深对消波效率的影响很小。由于波浪非线性的影响,基于线性波理论的消波理论模型对植物消波能力的估计偏小。  相似文献   

6.
Bragg reflection of water waves by multiple floating horizontal flexible membranes is investigated based on the linear wave theory and the assumption of small membrane response. Under the floating horizontal membranes, periodical submerged rectangular bars are arranged on the flat seabed. The total reflection and transmission coefficients are obtained by using the eigenfunction expansion method and the wide spacing approximation. The calculated coefficients are validated with the results available in the literature, which shows that the present method is applicable. The characteristics of Bragg reflection are systematically investigated by changing various parameters including the height of the rectangular bars, the number, the tension, the spacing, and the length of the flexible membranes. The results can help designing multiple floating horizontal flexible membranes as effective floating breakwaters by taking advantage of Bragg reflection.  相似文献   

7.
《Ocean Engineering》1999,26(4):325-341
Based on a two-dimensional linear water wave theory, this study develops the boundary element method (BEM) to examine normally incident wave scattering by a fixed, submerged, horizontal, impermeable plate and a submerged permeable breakwater in water of finite depth. Numerical results for the transmission coefficients are also presented. In addition, the numerical technique's accuracy is demonstrated by comparing the numerical results with previously published numerical and experimental ones. According to that comparison, the transmission coefficient relies not only on the submergence of the horizontal impermeable plate and the height of the permeable breakwater, but also on the distance between horizontal plate and permeable breakwater. Results presented herein confirm that the transmission coefficient is minimum for the distance approximately equal to four times the water depth.  相似文献   

8.
Based on a two-dimensional linear water wave theory, this study develops the boundary element method (BEM) to examine normally incident wave scattering by a fixed, submerged, horizontal, impermeable plate and a submerged permeable breakwater in water of finite depth. Numerical results for the transmission coefficients are also presented. In addition, the numerical technique's accuracy is demonstrated by comparing the numerical results with previously published numerical and experimental ones. According to that comparison, the transmission coefficient relies not only on the submergence of the horizontal impermeable plate and the height of the permeable breakwater, but also on the distance between horizontal plate and permeable breakwater. Results presented herein confirm that the transmission coefficient is minimum for the distance approximately equal to four times the water depth.  相似文献   

9.
A three-dimensional general mathematical hydroelastic model dealing with the problem of wave interaction with a floating and a submerged flexible structure is developed based on small amplitude wave theory and linear structural response. The horizontal floating and submerged flexible structures are modelled with a thin plate theory. The linearized long wave equations based on shallow water approximations are derived and results are compared. Three-dimensional Green’s functions are derived using fundamental source potentials in water of finite and infinite depths. The expansion formulae associated with orthogonal mode-coupling relations are derived based on the application of Fourier transform in finite and infinite depths in case of finite width in three-dimensions. The usefulness of the expansion formula is demonstrated by analysing a physical problem of surface gravity wave interaction with a moored finite floating elastic plate in the presence of a finite submerged flexible membrane in three-dimensions. The numerical accuracy of the method is demonstrated by computing the complex values of reflected wave amplitudes for different modes of oscillation and mooring stiffness. Further, the effect of compressive force and modes of oscillations on a free oscillation hydroelastic waves in a closed channel of finite width and length for floating and submerged elastic plate system is analysed.  相似文献   

10.
Pradip Deb Roy  Sukamal Ghosh   《Ocean Engineering》2006,33(14-15):1935-1953
The paper presented is a solution of shallow water wave force, using small amplitude linear wave theory on two-dimensional vertically submerged circular thin plates under three different configurations: (1) a surface-piercing circular thin plate, (2) a submerged circular thin plate, and (3) a bottom-standing circular thin plate. Finally Morison's equation is used for the determination of wave force which is based on the linear wave theory. The plate is submerged in water near the shore on uniformly sloping bottom. The solution method is confined in a finite domain, which contains both the region of different depth of water and the plate. Laplace's equation and boundary value problems are solved in a finite domain, by the method of separation of variables and the small amplitude linear wave theory. The variation of horizontal force by single particle, total horizontal force and moment with respect to the wave amplitude are obtained at different depth of water and at different wave period. It is observed that the force and moment are converging with the increase of wave period and the gradients of force and moment with respect to the wave amplitude are extremely high for lower wave period.  相似文献   

11.
卢坤  屈科  姚宇  孙唯一  蒋昌波 《海洋通报》2021,40(2):143-151
基于非静压单相流模型NHWAVE建立了高精度二维数值波浪水槽,采用日本2011年实测真实海啸波型系统研究了海啸波在岛礁上传播变形的规律,并且分析了波高、礁坪淹没水深和礁前斜坡坡度等因素对孤立波和真实海啸传播变形的影响。结果表明,相比孤立波,类海啸波的波长明显大于孤立波波长,在测点处引起的水面变化持续时间更长,同等波高情况下真实海啸波型比孤立波能够携带更多的能量,与岛礁的相互作用也更为复杂,在礁坪上形成的淹没水深约为孤立波的两倍。礁前斜坡坡度和礁坪淹没水深均对类海啸波的反射和透射系数有显著影响。随着礁前斜坡坡度的增加,反射系数和透射系数均逐渐增加。随着礁坪淹没水深的增加,反射系数逐渐减小,而透射系数逐渐增大。但是,反射系数和透射系数均随着入射波高的增加而逐渐减小。  相似文献   

12.
柔性水囊潜堤由橡胶制成,内部充水,具有结构简单、造价低廉等优点,能较好满足人工岛、跨海桥梁、海洋平台等基础设施建设工程对简单便携、拆装方便的临时防波堤的需求。为了探究柔性水囊潜堤的消波特性,在溃坝水槽内开展溃坝波与半圆柱形柔性水囊潜堤相互作用的试验研究,重点探究柔性水囊潜堤与溃坝波相互作用过程中水位变化特性,并与半圆柱刚性潜堤的性能进行比较;同时分析柔性水囊潜堤内部初始水压和浸没深度等参数对其消波性能的影响。结果表明:柔性水囊潜堤能够用作临时防波堤来衰减波浪;与半圆柱刚性潜堤相比,柔性水囊潜堤在降低溃坝波无量纲最大水位、提高消波性能方面更具优势;内部初始水压是影响柔性水囊潜堤消波性能的重要因素,适当降低内部初始水压,有利于增强柔性潜堤的变形程度,进而增加波能耗散,可获得更好的消波效果;而增加浸没深度即潜深,会使得柔性水囊潜堤对溃坝波的影响程度降低,消波效果减弱。  相似文献   

13.
何飞  陈杰  蒋昌波  赵静 《海洋学报》2018,40(5):24-36
海草所形成的植物消波体系能有效防止岸线的侵蚀。利用Sánchez-González等的实验数据分析了波浪非线性对海草消波特性的影响。研究结果表明,相对水深和波陡对海草床的波能衰减系数影响依赖于海草淹没度。相对波高一定时,拖曳力系数随相对水深的增大而增大。对给定的相对水深,拖曳力系数随波陡的增大而减小。波浪非线性对于规则波和非规则波海草消波特性的影响并不一致。用无量纲参数(邱卡数、雷诺数、厄塞尔数)表达拖曳力系数的效果取决于拖曳力系数与无量纲参数的关系中是否充分考虑波浪非线性对拖曳力系数的影响。  相似文献   

14.
Attenuations of solitary wave over a patch of submerged canopy are experimentally investigated. The submerged canopy is modeled by a group of circular cylinder array. The decay coefficients of different wave heights in two water depths along the wave flume are measured for six canopy models, including two canopy heights and three styles of arrangements. The relationships among the decay coefficient, and the dimensionless wave height, submergence ratio, relative height and arrangement of the canopy are experimentally studied. 2D PIV technique is employed to measure the representative flow field inside the canopy. A four-deck flow structure is proposed for wave flow field over shallow submerged canopy. The characteristics of shear flow inside the aligned canopy region are discussed.  相似文献   

15.
Attenuations of solitary wave over a patch of submerged canopy are experimentally investigated. The submerged canopy is modeled by a group of circular cylinder array. The decay coefficients of different wave heights in two water depths along the wave flume are measured for six canopy models, including two canopy heights and three styles of arrangements. The relationships among the decay coefficient, and the dimensionless wave height, submergence ratio, relative height and arrangement of the canopy are experimentally studied. 2D PIV technique is employed to measure the representative flow field inside the canopy. A four-deck flow structure is proposed for wave flow field over shallow submerged canopy. The characteristics of shear flow inside the aligned canopy region are discussed.  相似文献   

16.
全球海岸生态系统正遭受气候变化及人类活动带来的威胁, 本文基于沙坝-潟湖系统海岸典型剖面形态, 通过设计实施动床波浪水槽试验, 定量研究了侵蚀浪条件下沉水植被对该系统海岸冲淤的影响。结果表明: 沉水植被明显削弱了沙坝前坡波浪破碎区前缘的波高增大幅度, 并使坝后波高衰减; 植被作用使波浪反射和透射系数减小、耗散系数增大; 侵蚀浪作用下, 沙坝坝顶冲刷较明显, 潟湖内呈淤积趋势, 海岸前丘受波浪冲刷呈陡坎形态。植被影响下沙坝和前丘区域最大侵蚀厚度均减小; 植被可减少沙坝净侵蚀量、潟湖内淤积量及离岸输沙量, 对海岸前丘有较好的保护作用。  相似文献   

17.
The interaction of obliquely incident surface gravity waves with a vertical flexible permeable submerged membrane wave barrier is investigated in the context of three-dimensional linear water wave theory. From the general formulation of the submerged membrane barrier, the performance of bottom-standing, surface-piercing and fully extended membrane wave barriers are analyzed for various values of wave and structural parameters. The analytic solution of the physical problem is obtained using eigenfunction expansion method and a coupled boundary element-finite difference method has been used to get the numerical solution. In the boundary element method, since the boundary condition on the membrane barrier is not known a priori, the membrane response and velocity potentials are solved simultaneously using appropriate discretization with the help of finite difference scheme. The convergence of the analytic and numerical solution techniques is discussed. The study reveals that for suitable combination of wave and structural parameters, approximately (45–50)% incident wave energy can be dissipated irrespective of membrane barrier configurations. Further, in certain situations, nearly full wave reflection and zero transmission occur for all barrier configurations. The study will be useful in the design of flexible permeable membrane to act as an effective wave barrier for creation of tranquility zone in the marine environment.  相似文献   

18.
The vegetation has important impacts on coastal wave propagation. In the paper, the sensitivities of coastal wave attenuation due to vegetation to incident wave height, wave period and water depth, as well as vegetation configurations are numerically studied by using the fully nonlinear Boussinesq model. The model is based on the implementation of drag resistances due to vegetation in the fully nonlinear Boussinesq equation where the drag resistance is provided by the Morison’s formulation for rigid structure induced drag stresses. The model is firstly validated by comparing with the experimental results for wave propagation in vegetation zones. Subsequently, the model is used to simulate waves with different height, period propagating on vegetation zones with different water depth and vegetation configurations. The sensitivities of wave attenuation to incident wave height, wave period, water depth, as well as vegetation configurations are investigated based on the numerical results. The numerical results indicate that wave height attenuation due to vegetation is sensitive to incident wave height, wave period, water depth, as well as vegetation configurations, and attenuation ratio of wave height is increased monotonically with increases of incident wave height and decreases of water depth, while it is complex for wave period. Moreover, more vegetation segments can strengthen the interaction of vegetation and wave in a certain range.  相似文献   

19.
Wave attenuation characteristics of a tethered float system have been investigated for various wave heights, wave periods, water depths, depths of submergence of floats and float sizes. As the floats are similar in size and shape, only a single tethered spherical float is considered for the theoretical analysis. Float motion is determined through the dynamical equation of motion, developed for a single degree of freedom. From incident and transmitted wave powers, transmission coefficients are computed. The results show that transmission coefficient does not vary with changes in wave height or water depth. When depth of submergence of float increases, wave attenuation decreases, showing that the system performs well when it is just submerged. As float velocity decreases with increase in float size, transmission coefficient increases with increase in float size. The influence of wave period on wave attenuation is remarkable compared to other parameters. The effect of drag on wave attenuation is studied for varying drag coefficient values. Theoretical results are compared with experimental values and it is found that theory overestimates wave attenuation which may probably be due to various linearisations involved in the theoretical formulation.  相似文献   

20.
The vegetation communities and spatial patterns on the Fire Island National Seashore are dynamic as the result of interactions with driving forces such as sand deposition, storm-driven over wash, salt spray, surface water, as well as with human disturbances. We used high spatial resolution QuickBird-2 satellite remote sensing data to map both terrestrial and submerged aquatic vegetation communities of the National Seashore. We adopted a stratified classification and unsupervised classification approach for mapping terrestrial vegetation types. Our classification scheme included detailed terrestrial vegetation types identified by previous vegetation mapping efforts of the National Park Service and three generalized categories of high-density seagrass, low-density seagrass coverages, and unvegetated bottom to map the submerged aquatic vegetation habitats. We used underwater videography, GPS-guided field reference photography, and bathymetric data to support remote sensing image classification and information extraction. This study achieved approximately 82% and 75% overall classification accuracy for the terrestrial and submnerged aquatic vegetations, respectively, and provided an updated vegetation inventory and change analysis for the Northeast Coastal and Barrier Network of the National Park Service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号