首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
才多  诸裕良 《海洋工程》2014,32(6):41-48
通过基于考虑波浪非线性频散关系的椭圆型缓坡方程数学模型(RIDE),在原高阶的控制方程中添加植物阻力项,建立了模拟植物区波浪传播的数学模型(RIDE-VEG)。将计算结果与规则波在植物场中变形的水槽试验数据进行比较,验证良好,并分析了植物区特征参数对于波浪传播的影响。针对相对淹没度、植物密度和波浪周期等因素对波高衰减的影响进行敏感性分析,结果表明其三者对于消浪效果的影响是单调的,但消浪效果对于波浪周期的敏感程度则较其余二者为弱。与其他学者的研究相比,忽略流场效应的RIDE-VEG模型较其它的模型计算更为简便,且计算结果较为满意。  相似文献   

2.
木本植被覆盖岸坡上波浪爬升过程的数值模拟研究   总被引:1,自引:1,他引:0  
近岸木本植物构成的生态缓冲带作为新型的海岸软防护结构,兼具功能性和生态友好性,在沿海工程建设中愈发受到关注,如何深入开展其防护效果的机理研究是目前亟待解决的问题。本文采用数值模拟方法,在N-S方程中分别考虑树枝和树干的拖曳力影响,提出了木本植被作用下波浪沿斜坡爬升的表面波衰减的连续介质等效模型,并采用MAC法来跟踪自由曲面上的水颗粒轨迹。本文以波浪沿1/30的斜坡爬升为算例,对比讨论了有无植被作用下波浪的传播过程,并将算例结果与以往试验结果规律进行对照,验证了数值模型的有效性。最后,分别讨论了植物枝干的高度、密度、树枝倾斜角度等植被特性和波浪因素对植被消浪效果的影响,得到植被消浪的基本规律。文中的计算结果也可为实际的护岸工程和生态景观设计提供参考。  相似文献   

3.
刘达  黄本胜  邱静  谭超 《海洋工程》2016,34(2):16-23
沿海防浪林能形成柔性的植物消浪体系,可以有效降低风暴潮灾害。由于防浪林消浪效果受波浪、近岸水深及植物等多重因素的影响,消浪机理较为复杂,以往的系统研究成果较少。本文以立面二维自由面紊流模型为工具,建立了基于植物冠层特征的多孔介质模型,精细地模拟了破碎波对植物带的冲击,并与物理模型试验结果进行了对比验证,计算分析了植物带宽度、植物密度、滩地水深等因素对消浪效果的影响。  相似文献   

4.
近岸波浪在刚性植被区域传播的数值模型   总被引:2,自引:0,他引:2  
基于扩展型Boussinesq水波方程,建立了波浪在刚性植被覆盖的近岸海域传播的数值模型。通过在动量方程源项中引入拖曳阻力项考虑植被对波浪的衰减作用。控制方程采用有限差分和有限体积混合格式求解,模型稳定性强,具备间断捕捉能力,能有效模拟近岸区域波浪的传播变形、破碎和处理海岸动边界问题。利用所建立模型对典型物理模型实验进行模拟,计算结果与实验结果吻合良好,表明模型可用于波浪在刚性植被覆盖海域的数值计算。  相似文献   

5.
基于抛物型缓坡方程模拟近岸植被区波浪传播   总被引:7,自引:2,他引:5       下载免费PDF全文
唐军  沈永明  崔雷 《海洋学报》2011,33(1):7-11
植被对波浪传播运动有重要影响。考虑近岸波浪在植被区传播中的折射、绕射、破碎及植被引起的波能耗损效应,基于抛物型缓坡方程建立了模拟近岸植被区波浪传播的数学模型,对模型进行了数值模拟验证,采用数值模拟试验分析了植被对波浪传播的影响。数值模拟结果表明,波浪在近岸植被区传播时,随着植被密度和植被高度的增加,波浪传播中的波高衰减增大,波能耗损增加;不同周期波浪在植被区传播中的波高衰减过程也明显不同。  相似文献   

6.
龚尚鹏  陈杰  蒋昌波  童忠武 《海洋工程》2020,38(2):65-72,82
近岸植物带能有效削弱波浪作用,植物带消浪影响因素分析对布置护岸工程、维护岸线稳定有重要意义。在模型实验基础上,探究相对波高、模型相对宽度、模型相对高度和体积分数对透射系数的影响。设置波浪水槽试验,研究孤立波在不同水深、入射波高及植物排布方式等组合条件下对植物消浪效果的影响。采用遗传编程法得出各复杂度下的透射系数计算公式,并分析各参数在方程中的表现情况,发现遗传编程能定性给出参数的敏感度。相比于非线性回归拟合结果,遗传编程方法得到的函数关系更加精确。采用人工神经网络方法进一步分析与验证各影响因素对植物消浪效果的影响程度,结果表明人工神经网络得出的结果与遗传编程方法相近,体积分数对消浪效果起主导作用。  相似文献   

7.
采用孤立波模拟海啸波,利用根茎叶定量概化模型近似模拟近岸刚性植物,以探究植物根、茎、叶对孤立波消减特性的影响。研究发现,透射系数的范围为0.56~0.85,植被区沿程波高衰减百分比的范围为25.9%~97.0%。根、叶在不同分布密度条件下的透射系数均随相对波高的增大而逐渐减小。当淹没度大于0.7时,在入射波高等于7.0,9.0和12.0 cm条件下,波高衰减强度沿流向的敏感度逐渐降低,植物消浪呈现边界效应。当淹没度为0.6、根和叶分布密度均为16枝/株时,波浪于植被区发生波高增大现象,波高增值的范围为3.0%~6.0%。植物根、茎、叶对孤立波消减特性的影响与根和叶的分布密度、淹没度及相对波高均相关。  相似文献   

8.
本文基于雷诺平均的Navier-Stokes方程和k-ε模型求解湍流流动,采用流体体积法(Volume of Fluid,VOF)追踪自由表面运动,建立无反射波浪数值水槽,对多消浪室开孔沉箱的消浪特性进行数值模拟研究。将单消浪室和多消浪室开孔沉箱反射系数和结构前波面分布的数值分析结果与物理模型试验结果进行对比验证,两者符合良好。利用数值算例,研究多消浪室开孔沉箱的反射特性以及开孔结构附近的速度场和湍流强度分布。分析结果表明:波浪与开孔沉箱相互作用时,涡旋和湍动主要分布在开孔墙和消浪室内部自由表面附近;与单消浪室开孔沉箱相比,多消浪室开孔沉箱可以更有效的耗散波浪能量,降低结构的反射系数。本文分析结果可为开孔沉箱结构的工程设计提供参考依据。  相似文献   

9.
针对T型透空式防波堤,通过浪高仪采集防波堤前后不同位置波面变化曲线,使用声学多普勒流速仪(NDV)测量不同位置流速随时间的变化,并分析了其相位平均流速的分布。基于VOF法的二维波浪数值水槽,对规则波作用下T型防波堤附近的动力特性进行了计算,水槽模型试验结果和数值模拟结果对比表明,数值计算结果与实验值吻合较好。采用该模型进一步对T型防波堤附近波浪场、流线、紊动动能、紊动动能耗散率变化以及不同尺寸的防波堤消浪效果进行模拟计算,重点分析了入射波高、防波堤入水深度和防波堤宽度变化的影响。  相似文献   

10.
以不同刚度硅胶圆杆群为概化植物模型,测定其抗弯弹性模量,通过波浪水槽实验,研究规则波在不同刚度植物杆群内的流速分布、紊动特征及不同刚度杆群的消浪效果。实验结果表明,当波浪通过柔性杆群时,受其摆动的影响,流速周期变化从单峰型逐渐转变成双峰型,杆群刚度越小形成的二次波峰越明显;不同刚度杆群内水体紊动强度变化显示,杆群刚度越大,造成杆群内水体的紊动强度越大;随着杆群抗弯弹性模量的增大,其消浪系数也增大,消浪系数的增长与材料的抗弯弹性模量值非线性关系,而是在某一弹性模量范围内,对消浪系数的影响较为敏感。  相似文献   

11.
This work presents a new model for wave and submerged vegetation which couples the flow motion with the plant deformation. The IH-2VOF model is extended to solve the Reynolds Average Navier–Stokes equations including the presence of a vegetation field by means of a drag force. Turbulence is modeled using a kε equation which takes into account the effect of vegetation by an approximation of dispersive fluxes using the drag force produce by the plant. The plant motion is solved accounting for inertia, damping, restoring, gravitational, Froude–Krylov and hydrodynamic mass forces. The resulting model is validated with small and large-scale experiments with a high degree of accuracy for both no swaying and swaying plants. Two new formulations of the drag coefficient are provided extending the range of applicability of existing formulae to lower Reynolds number.  相似文献   

12.
Surface wave interaction with aquatic vegetation appears to play a key role in coastal hydro-morpho-dynamics. As an example, the presence of a dense meadow at intermediate water depth is usually associated with a stable and resilient shore. Wave-meadow interactions are investigated here by means of physical modelling, with a focus on wave height distribution and hydrodynamics. The central part of a wave flume is covered by flexible artificial seagrass, composed of polyethylene leaves. This vegetation is tested in both near emergent and submerged conditions. The wave height reduction is evaluated by means of a drag coefficient defined from linear wave theory, which contains all the unknowns of the adopted methodology. The behaviour of such a coefficient is investigated as a function of a wave related Reynolds number. The influence of the flexibility of the leaves is also considered, together with a wave frequency parameter. The results show a complex behaviour with three different trends for near rigid, intermediate or highly flexible leaves. Amplitudes of the orbital velocities are investigated and show a fairly good match with the linear wave theory. On the contrary, the mean velocity along the water column appears to be modified by the seagrass for submerged leaves.  相似文献   

13.
Vegetation damping effects on propagating water waves have been investigated by many researchers. This paper investigates the effects of damping due to vegetation on solitary water wave run-up via numerical simulation. The numerical model is based on an implementation of Morison's formulation for vegetation induced inertia and drag stresses in the nonlinear shallow water equations. The numerical model is solved via a finite volume method on a Cartesian cut cell mesh. The accuracy of the numerical scheme and the effects of the vegetation terms in the present model are validated by comparison with experiment results. The model is then applied to simulate a solitary wave propagating on a plane slope with vegetation. The sensitivity of solitary wave run-up to plant height, diameter and stem density is investigated by comparison of the numerical results for different patterns of vegetation. The numerical results show that vegetation can effectively reduce solitary wave propagation velocity and that solitary wave run-up is decreased with increase of plant height in water and also diameter and stem density.  相似文献   

14.
为研究鱼类高速游动机理,以金枪鱼月牙形尾鳍为对象,采用面元法计算分析了其非定常水动力性能。假设尾鳍在横移和摇摆的同时,以某一匀速向前运动,并假设其在弦向和展向以某一给定规律发生变形,以模仿柔性变形。探讨了前进速度、横移和摇摆的幅度、频率及其相位差对柔性尾鳍推进性能的影响,并与做相应运动的刚性尾鳍进行了对比。  相似文献   

15.
In storm conditions, nonlinear wave loads on monopile offshore wind turbines can induce resonant ringing-type responses. Efficient, validated methods which capture such events in irregular waves in intermediate or shallow water depth conditions are needed for design. Dedicated experiments and numerical studies were performed toward this goal. The extensive experimental campaign at 1:48 scale was carried out for Statoil related to the development of the Dudgeon wind farm, and included both a rigid model and a flexible, pitching-type, single degree-of-freedom model. Twenty 3-hour duration realizations for 4 sea states and 2 water depths were tested for each model. A high level of repeatability in ringing events was observed. Uncertainties in the experimental results were critically examined. The stochastic variation in the 3-hour maximum bending moment at the sea bed was significantly larger than the random variation in repetition tests, and highlighted the need for a good statistical basis in design. Numerical simulations using a beam element model with a modified Morison wave load model and second order wave kinematics gave reasonable prediction of the ringing response of the flexible model, and of the measured excitation forces on the rigid model in the absence of slamming. The numerical model was also used to investigate the sensitivity of the responses with respect to damping and natural period. A simple single degree-of-freedom model was shown to behave similarly to a fully flexible model when considering changes in natural frequency and damping.  相似文献   

16.
Wetlands protect mainland areas from erosion and damage by damping waves. Yet, this critical role of wetland is not fully understood at present, and a means for reliably determining wave damping by vegetation in engineering practice is not yet available. Laboratory experiments were conducted to measure wave attenuation resulting from synthetic emergent and nearly emergent wetland vegetation under a range of wave conditions and plant stem densities. The laboratory data were analyzed using linear wave theory to quantify bulk drag coefficients and with a nonlinear Boussinesq model to determine numerical friction factors to better represent wetland vegetation in engineering analysis.  相似文献   

17.
The vegetation has important impacts on coastal wave propagation. In the paper, the sensitivities of coastal wave attenuation due to vegetation to incident wave height, wave period and water depth, as well as vegetation configurations are numerically studied by using the fully nonlinear Boussinesq model. The model is based on the implementation of drag resistances due to vegetation in the fully nonlinear Boussinesq equation where the drag resistance is provided by the Morison’s formulation for rigid structure induced drag stresses. The model is firstly validated by comparing with the experimental results for wave propagation in vegetation zones. Subsequently, the model is used to simulate waves with different height, period propagating on vegetation zones with different water depth and vegetation configurations. The sensitivities of wave attenuation to incident wave height, wave period, water depth, as well as vegetation configurations are investigated based on the numerical results. The numerical results indicate that wave height attenuation due to vegetation is sensitive to incident wave height, wave period, water depth, as well as vegetation configurations, and attenuation ratio of wave height is increased monotonically with increases of incident wave height and decreases of water depth, while it is complex for wave period. Moreover, more vegetation segments can strengthen the interaction of vegetation and wave in a certain range.  相似文献   

18.
Interaction of solitary waves with emergent, rigid vegetation   总被引:3,自引:0,他引:3  
In this study, solitary wave interaction with emergent, rigid vegetation was studied numerically and experimentally. Laboratory experiments were carried out in a wave flume with vegetation models of different lengths and porosities; the Boussinesq equations with the effects of the vegetation being modeled by a quadratic drag law are used to simulate the wave scattering by and the wave propagation through vegetation. Effects of incident wave height, vegetation density, and vegetation length are discussed. An empirical expression for the mean drag coefficient of emergent, rigid vegetation is presented and compared with other available data. The results are useful for studying tsunami hazard mitigation by coastal forests.  相似文献   

19.
《Coastal Engineering》2001,44(1):37-63
This paper presents a set of results from a laboratory study on water wave propagation above submerged vegetation growing in the surf zone and the effect of submerged vegetation on dune erosion. The study has focused on the kelp Laminaria hyperborea. The reason is that this kelp is commercially harvested along the Norwegian coast and there is a need to obtain better knowledge on the possible consequences of this harvesting. Experiments were run with irregular waves over a sloping bottom, and a kelp field was simulated by 5000 artificial kelp plants in a 1:10 scale. The experiments primarily focused on the effect of kelp upon erosion of a sand dune, wave damping and water velocities. It was found that the water level is a very important factor to the degree of dune erosion, while the kelp has only a minor effect. The kelp does, however, cause significant wave damping and the degree of wave breaking is reduced. It was also found that the kelp modifies the water velocity profile. In a region above the kelp canopy layer, the time-averaged water velocity was shoreward, while the seaward undertow was confined to a region higher up in the water column.  相似文献   

20.
蒋昌波  徐进  邓斌  陈杰  屈科 《海洋通报》2019,38(5):591-600
基于非静压单相流模型NHWAVE,设计不同的计算工况,系统研究了规则波与非规则波作用下,非淹没刚性植物的消波特性。将计算结果和实验数据进行对比分析,验证了非静压模型NHWAVE计算植物消波特性的准确性。进一步研究了波高、周期和水深等因素对植物消波特性的影响,探讨了植物消波特性与这些水动力因素的内在联系。结果表明:非淹没刚性植物的消波效率受波高和周期的影响较大,水深对消波效率的影响很小。由于波浪非线性的影响,基于线性波理论的消波理论模型对植物消波能力的估计偏小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号