首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
ABSTRACT

Bucket foundations have been widely used for a variety of offshore applications. The effects of skirt length on ultimate bearing capacity of bucket foundation have been studied and reported in published scientific papers. However, few studies have addressed the behavior of bucket foundations in loose saturated sand. In this paper, a series of experimental investigations were performed to determine the bearing capacity of bucket foundation under uniaxial loading. The experiments were conducted on small-scale foundations under vertical loading in loose saturated sand. It was found that increasing the skirt length would enhance the bearing capacity of bucket foundation. As reflected in the present study, bearing strength might be enhanced more than 5 times in loose saturated sand in comparison to surface footing with equivalent diameter. Based on the experimental investigation, a depth factor was proposed to approximate bearing capacity of bucket foundations in terms of those for surface footing and embedment ratio. Moreover, the corresponding settlement of foundation at the failure load was found to increase with skirt length.  相似文献   

2.
Suction bucket foundation is a typical type for offshore turbines. Scour caused by wave and current can reduce the stability of foundation and then endanger the whole structure. This paper details a series of suction bucket model tests performed in sand under wave cyclic loading. The model tests investigate the effect of scour on stability of bucket foundation by artificially excavated scour hole around the foundation. It is revealed that the behavior of foundation bearing capacity can be divided into two stages: the initial cyclic stage and the final stage (showing either cyclic stability or cyclic failure). When the wave circulation is stable, the sand on the front and back sides of the foundation is suspected to be liquefied. With the increase in scour depth, the stability of foundation is gradually reduced, the behavior of foundation gradually changes from a state of cyclic stability to cyclic failure, and the number of waves that can be withstood is drastically reduced. Finally, the height of the center of rotation of the suction bucket was observed to descend with the increase in scour depth.  相似文献   

3.
风机基础作为海上风机整体结构的重要组成部分,承受着上部风机所受到的风浪流荷载,并且对风机的安全性及可靠性至关重要。吸力式桶形基础由于其安装简单和可重复利用等优点,在海洋平台基础中得到了广泛应用,并逐步应用于海上风机基础中。但由于海上风机与海洋平台在海洋环境中的荷载工况有一定的差别,仍需要通过对其承载特性研究现状进行全面认识,以实现吸力式桶形基础在海上风机基础中的可靠应用。文中通过总结和评价现有研究对桶形基础在不同土体条件以及荷载条件下进行试验及数值模拟分析得到的研究结果,综述了静荷载和循环荷载作用下砂土和黏土中的吸力式桶形基础的承载特性研究现状,以及海上风机吸力式桶形基础的相关研究。文章展望了目前应用于海上风机基础的桶形基础仍缺乏的研究,为海上风机吸力式桶形基础的可靠应用及后续研究提供重要参考。  相似文献   

4.
Suction buckets are a promising foundation solution for offshore wind energy systems. The bearing behavior of monopod buckets under drained monotonic loading in very dense and medium dense sand is investigated in this study by means of numerical simulation with the finite element method. Special focus is given to the ultimate capacity and the initial stiffness of the bucket-soil foundation system. The numerical model is validated by comparison with field test results. The bearing behavior of the structure is explained through an evaluation of a reference system. It is shown that the bucket experiences a heave during horizontal loading, which leads to the formation of a gap between the bucket lid and the soil with increasing load. At large loads and rotations close to failure of the system there is no contact between lid and soil, and the whole load is transferred to the soil via the bucket skirt. A parametric study shows how the ultimate capacity and initial stiffness of the system depend on the bucket dimensions and loading conditions, i.e. load eccentricity. Normalized equations for ultimate capacity and initial stiffness are derived from the numerical simulation results, which can be used in the scope of a preliminary design for buckets in sand.  相似文献   

5.
Suction caissons are considered as an alternative foundation solution for offshore wind turbines. In the present study, three-dimensional finite element (FE) analyses are performed to assess the behavior of a bucket foundation and soil supporting the bucket under cyclic and monotonic loading conditions. A parametric study is also performed for a wide range of bucket geometries and two different soil densities. The results indicate that bucket geometry and soil properties significantly affect the foundation response due to cyclic loading conditions. The bucket with the smallest geometry installed in medium dense soil exhibits the lowest stiffness in initial loading and then with the progress of cyclic loads experiences lower stiffness compared to the caissons with larger geometries. The sensitivity of the foundation response to the soil density is higher than its geometry. The bucket under the lowest vertical load experiences the lowest stiffness in both virgin loading and during the progress of cyclic loads. The highest soil displacement is observed near the lid at the interior of the bucket. Stresses caused by cyclic loading belong to certain ranges. Additionally, increases in the skirt length result in increases in the stress ranges and shift the range to the right side. With respect to the monotonic loading conditions, normalized diagrams are proposed that can be used for the preliminary design of suction bucket foundations.  相似文献   

6.
使用了ANSYS软件对筒型基础进行地震分析,计算了砂土液化情况以及由此导致的承载力的损失,对比了在筒-土界面采用节点耦合和设置接触单元两种形式对该结果的影响,结果显示节点耦合形式既可以保证计算精度,也能提高计算效率。同时,分析了不同长细比筒型基础的砂土液化深度和承载力损失,结果显示较大的长细比有利于减少承载力损失。  相似文献   

7.
A 1-g model experimental study was conducted to investigate the accumulated rotations and unloading stiffness of bucket foundations in saturated loose sand. One-way horizontal cyclic loading was applied to model bucket foundations with embedment ratios 0.5 and 1.0. Up to 104 cycles of loading were applied at a frequency of 0.2 Hz varying load amplitudes. The accumulated rotation of the bucket foundations increased with the number of cycles and the load amplitudes. Empirical equations were proposed to describe the accumulated rotation of the foundations. The unloading stiffness of foundations increased with the number of cycles but decreased with an increase in load amplitude. The initial unloading stiffness of L/D = 1.0 (L is skirt length; D is foundation diameter) was approximately twice that of L/D = 0.5. Excess pore water pressure difference of 50% was observed between L/D = 0.5 and 1.0. The suction and static capacity of the bucket increased with increase of bucket embedment ratio with a difference of 69.5% and 73.6% respectively between L/D = 0.5 and 1.0.  相似文献   

8.
Existing tripod suction bucket foundations, utilised for offshore wind turbines, are required to resist significant lateral loads and overturning moments generated by wind and currents. This paper presents an innovative type of tripod bucket foundation, ‘hybrid tripod bucket foundation’, for foundations of offshore wind turbines, which has the ability to provide a larger overturning capacity compared with conventional tripod buckets. The proposed foundation consists of a conventional tripod bucket combined with three large circular mats attached to each bucket. A series of experiments were conducted on small-scale models of the proposed foundation subjected to overturning moment under 1g conditions in loose sand. Different circular mat diameter sizes with various bucket spacings were considered and the results were compared with conventional tripod bucket foundation. Finite element models of the proposed foundation were developed and validated using experimental results and were used to conduct a parametric study to understand the behaviour of the hybrid tripod bucket foundation. The results showed that there is a significant increase in overturning capacity provided by the novel foundation. The results of this work can significantly improve lowering the costs associated with installation of foundations to support offshore wind turbines.  相似文献   

9.
在阅读、分析以往的有关资料的基础上 ,结合实际的试验条件 ,对桶形基础及其作用下的粉质土海床失稳机制研究的试验作出了专门设计。该设计通过配土、设计模型桶基和负压沉贯的操作过程、设置孔压传感器等实验手段 ,努力从土体破坏的角度 ,寻求负压沉贯过程中沉贯负压、沉贯阻力及孔隙水压力之间的变化关系和确定桶基的上拔力。并且指出了数据处理的基本思路 ,以利于课题的深入研究。  相似文献   

10.
筒型基础负压沉贯就位后,筒内表面土的沉降会使土层上部产生一层水膜。严重的水膜现象会影响到筒基平台的正常使用,为此专门设计本项试验来模拟筒内水膜形成的机理,并且提出了向筒内灌浆的方法解决水膜问题的方案。该试验通过配土、设计模型筒基、负压沉贯和筒内灌浆等操作过程,设置土槽、安装孔压传感器等实验手段,从土体破坏的角度,寻求负压沉贯过程中沉贯负压、沉贯阻力及孔隙水压力等因素对水膜形成的影响,试图探询水膜形成的规律,并且通过不同泥浆的灌浆试验来寻找有效解决水膜现象的方法。  相似文献   

11.
针对一种四筒导管架海上风机基础,基于有限元数值分析,通过建立砂土中不同筒径和筒高的四筒导管架基础有限元模型,研究砂土中单调弯矩荷载的作用下,筒径与筒高对导管架基础抗弯承载力的影响。分析结果表明:四筒导管架风机基础的抗弯承载力随着筒高或筒径的增加呈明显的增长趋势,相比于筒径的增加,筒高的增加对提高基础抗弯承载力更为有效;在极限弯矩荷载的作用下,基础旋转中心水平向位置受筒高的影响较大,但竖向位置受筒高和筒径的影响很小。  相似文献   

12.
某工程拟在深水软土地基上修筑防波堤,为了尽量减少地基处理充分利用天然地基,创新性设计出一种轻型薄壁的预制防波堤结构,其挡浪部分为直立薄壁圆筒,基础部分则为倒扣的薄壁椭圆形桶,并且椭圆形下桶为外壁和内隔板分成9个格室,防波堤结构浮运至指定位置后,拟采用负压工法施工安装就位。这种新型防波堤结构为国内外首次提出,其下沉施工设计尚无规范可循,为此开展了土工离心模型试验,在模型加速过程中模拟了椭圆形下桶基础在淤泥层中的自重下沉,之后利用新研发了一种大行程作动加载装置给椭圆形下桶施加下推力,让其继续向下贯入直至穿越整个淤泥层,以模拟负压工法的贯入下沉。试验测量了下桶贯入下沉过程中的推力与贯入位移,还尝试测量了桶壁和内隔板断面的压应变,由此分析了下桶基础的下沉总阻力、桶壁摩擦力以及截面压应变随贯入位移的变化。结果发现,这些曲线均出现了转折点,根据转折点对应的下沉总阻力确定了椭圆形下桶基础贯入过程所遭遇的临界下沉总阻力值,据此估算了负压工法中所需施加的压力差。  相似文献   

13.
周松望  王建华 《海洋工程》2014,32(1):106-111
在一个大型土池中进行了软土中组合四桶基础在竖向静荷载与水平循环荷载共同作用下的承载力模型试验,研究了竖向静荷载与水平循环荷载对组合桶形基础破坏形式与承载力的影响。试验结果表明,组合四桶基础的变形主要包括水平循环变形与竖向循环累积沉降。基础的破坏形式取决于水平循环荷载与竖向静荷载。若竖向静荷载较小,过大的水平循环位移将导致基础破坏;随竖向静荷载增加,竖向循环累积沉降将变为导致基础破坏的主要原因。试验结果还表明,在不同竖向静荷载与水平循环荷载共同作用下,基础的水平循环承载力大约为水平静承载力的70%左右。  相似文献   

14.
Vertical uplift static loading tests of single model pile were conducted in the in-lab calcareous sand and quartz sand by emulating practical condition of full-size piles in site. The settlement, lateral deflection, axial force, and friction distribution of the pile are analyzed for each physical test. The pile behaviors in calcareous sand and quartz sand are compared. From the test results, it can be found that the pile top displacement of uplift pile in calcareous sand can be divided into two stages: the pile–sand synchronous stage and pile–sand asynchronous (relative displacement) stage. Data from uplift tests show that the heave of calcareous sand around pile top is very small, which is resulted from the mutually restraint of surface particle. The mutual restriction of surface particle leads to “bottleneck effect” and strengthens ultimate side friction of upper pile segment. In addition, the shear dilatancy and particle breakage of calcareous sand lead to the upper harden and the lower soften of side friction, respectively. Cases of calcareous sand and quartz sand show different responses to pile forming methods, which due to the sands’ different characteristics of particle breakage when compressed as well as plastic deformation under loading–unloading conditions.  相似文献   

15.
近海海床表层多为软黏土或淤泥质土,为探究海床表层软土对海上风电宽浅式筒型基础承载特性的影响,以中国广东某海域风电场为背景,通过有限元分析的方法,研究竖向、水平、弯矩荷载作用下软土层厚度和土体强度对基础极限承载力、破坏模式以及筒基土压力分布的影响。研究结果表明:当软土层厚度小于H/2(H为筒裙高度)时,单向荷载作用下宽浅式筒型基础极限承载力随软土层厚度的增加呈线性减小的趋势;当软土层厚度大于H/2后,承载力降低速率逐渐增大。表层软土的存在,使得塑性区范围缩小,软土层内土体塑性破坏更加明显。竖向荷载作用下,随软土层厚度的增大,筒顶承载先减小后增大,筒内侧摩阻力先增大后减小;水平荷载和弯矩作用下,筒侧被动土压力的降低是引起软土覆盖地基中基础承载能力降低的主要因素。  相似文献   

16.
Under the effect of eccentric loads,when the suction pressure of the composite bucket foundation is leveled,the seepage failure is very easy to occur.The seepage failure occurrence causes the foundation to settle unevenly and impairs the bearing performance.This study uses ABAQUS finite element software to establish a composite bucket foundation model for finite element analysis.The model simulates the seepage of the foundation penetrating process under eccentric load to reveal the induced seepage characteristics of the bucket foundation.The most vulnerable position of seepage failure under the eccentric loading is elucidated.Critical suction formulas for different offset eccentric moment strategies are derived and compared with existing literature formulas.Then the derived formula is supplemented and corrected according to the pressure difference between adjacent cabins.Conclusions can be drawn:(1)Under eccentric loads,the critical suction decreases about 7%?10%.(2)The pressure difference between adjacent cabins impacts significantly on the seepage field,and the critical suction,at most,can be reduced by 17.56%.(3)the offset strategies have little effect on the seepage field.Efficient and appropriate strategies can be selected to meet the requirement of leveling in engineering project.  相似文献   

17.
This paper presents the results of three-dimensional finite element analyses of the suction bucket foundation used for offshore wind turbines. The behavior of the bucket and the response of soil supporting the bucket in dense and medium dense sandy soils subjected to static horizontal load are investigated. Field tests results and a centrifuge model test are used to validate the numerical model. Dimensionless horizontal load-displacement and overturning moment-rotation relationships are derived utilizing the Power law and Buckingham’s theorem. The results show good agreement between the numerical analysis results and the straight lines obtained from the Power law until a specific value of horizontal load and overturning moment. Regarding stress behavior of soil supporting the bucket, due to soil densification and bucket movement, maximum stresses are seen near the bucket tip at the right inside of the bucket. The major part of the applied load is transferred by the bucket skirt. Numerical analysis modeling results show that the bucket rotation and displacement are highly dependent on the bucket geometry and soil properties in addition to loading conditions. Normalized equations and figures for the ultimate horizontal load and overturning-moment capacities are presented and can be used for the preliminary design of the bucket foundations in sandy soils.  相似文献   

18.
Suction buckets differ with their easy and cost-efficient installation technique from other foundation types for offshore wind turbines. For successful completion of their installation process, suction is essential, but the imposed seepage leads to the changes in states of the soil in and around the bucket. Especially, a loosening of soil inside the bucket affects the load carrying behaviour of bucket subjected to repetitive loading resulting from environmental conditions. In this study, the behaviour of buckets under cyclic axial compressive loads with considering a possible loosening and related changes in permeability of soil inside the bucket is investigated numerically. In the framework of finite element analysis, a fully coupled two-phase model and a hypoplastic constitutive model are used to describe the saturated sandy soil behaviour under repetitive loading. The porosity-permeability variation is taken into account by Kozeny–Carman relationship. Special attention is dedicated to load carrying behaviour of bucket top plate, inner and outer skirt as well as base and their changes resulting from a loosening of soil inside the bucket with variable aspect ratio. For this purpose, cyclic axial compressive loads which cause an attenuation and progressive failure of soil-bucket system response are considered. The main findings on the changes in load carrying behaviour of bucket are presented and discussed.  相似文献   

19.
The central Alborz mountain range, located in northern Iran, neighboring the Caspian Sea and where the two Persia and Eurasia plates meet, is known as a seismologically active area. In this regard, investigation of the behavior of saturated sand deposits located in this area may be of particular interest. Saturated sand deposits are subjected to instabilities owing to liquefaction or volume change due to earthquake shakings. A particular type of saturated sand deposits is Anzali sand which is abundant in Anzali port and other cities located in this area in northern Iran. This type of sand is a representative for most sands found in this area, i.e., the southern coastal line of Caspian Sea. This research is solely focused on the volume change behavior of marine deposits of Anzali area, often characterized as Anzali sand, in terms of the settlement of a model footing located on the surface of the sand by the aid of a transparent laminar shear box apparatus. Effects of a number of factors such as the frequency of the cyclic loading, the initial density of the sand, and the sample preparation method have been investigated. Observations indicated that the density index and the frequency of loading which are proportional to the energy of an earthquake have direct effects on the accumulation and amount of the final settlement of Anzali sand.  相似文献   

20.
The response of bucket foundations on sand subjected to planar monotonic and cyclic loading is investigated in the paper. Thirteen monotonic and cyclic laboratory tests on a skirted footing model having a 0.3 m diameter and embedment ratio equal to 1 are presented. The loading regime reproduces the typical conditions of offshore wind turbines: very large cyclic overturning moment, large cyclic horizontal load and comparatively little, self-weight induced, vertical load. The experimental soil-foundation response is interpreted within the macro-element approach, using an existing analytical model, suitably modified to accommodate the footing embedment and the application of cyclic load. Details of the proposed model are provided together with evidences of its ability to reproduce the essential features of the experimentally observed behaviour. The results of the study aim at increasing the confidence in the use of the macro-element approach to predict the response of bucket foundations for offshore wind turbines, notably as the long-term accumulated displacements are concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号