首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
适于模拟不规则水域波浪的缓坡方程两种数值模型比较   总被引:1,自引:1,他引:0  
本文分析比较了适于不规则水域波浪模拟的椭圆型缓坡方程两种数值模型。两种数值模型均采用有限体积法离散,分别基于四叉树网格和非结构化三角形网格建立。首先结合近岸缓坡地形上波浪传播的经典物理模型实验对两种数值模型分别进行了验证,并结合计算结果对比分析了两种模型的计算精度和效率。计算结果表明,两种数值模型均可有效地模拟近岸波浪的传播变形;相对非结构化三角形网格下的模型,基于四叉树网格建立的数值模型在数值离散和求解过程中无需引入形函数、不产生复杂的交叉项,离散简单,易于程序实现,且节约计算存储空间,计算效率高。  相似文献   

2.
基于数值模拟的渤海海域地震海啸危险性定量化研究   总被引:1,自引:1,他引:0  
根据地震海啸产生的条件,结合渤海海域的地形特征、地质构造、地震学特征和历史地震及海啸记录对渤海海域潜在的地震海啸进行了数值模拟研究。分析了渤海可能引发地震海啸的震源区域,讨论了渤海发生海啸灾害的可能性。文中通过数值模拟再现了渤海历史上几次规模较大的地震事件可能引发的海啸情景,研究分析了可能的地震海啸在渤海及周边海域的传播过程及波动特征.地震海啸传播模型采用基于四叉树原理的自适应网格加密技术,有效解决了局部分辨率与计算效率之间的矛盾。数值计算包括地震海啸产生及传播过程。利用该模型对渤海潜在的地震海啸进行了数值计算,基于数值计算结果定量阐述了渤海海域潜在地震海啸对渤海局部岸段及北黄海沿岸的影响,给出了渤海可能地震海啸危险性划分;研究结果将为我国海啸危险性分析和海啸预警技术研究工作提供技术支持。  相似文献   

3.
In this paper, a numerical model is established for simulating the wave forces on a submarine pipeline. A set of two-dimensional Navier–Stokes equations is discretized numerically with a finite volume method in a moving mesh system. After each time step, the mesh is modified according to the changed wave surface boundary. The deffered correction second-order upwind scheme (SUDC) is adopted here to discretize the convective fluxes. The effects of the clearance between the pipeline and the seabed, water depth and wave height on wave forces are studied, respectively. The results by the numerical simulation agree well with the experimental data and theory value.  相似文献   

4.
An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run.  相似文献   

5.
赵明  滕斌  谭丽 《中国海洋工程》2004,18(3):335-346
In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two-dimensional Navier-Stokes equations is solved numerically with a finite element method. In order to track the moving non-linear wave surface boundary, the Navier-Stokes equations are discretized in a moving mesh system. After each computational time step, the mesh is modified according to the changed wave surface boundary. In order to stabilize the numerical procedure, a three-step finite element method is applied in the time integration. The water sloshing in a tank and wave propagation over a submerged bar are simulated for the first time to validate the present model. The computational results agree well with the analytical solution and the experimental data.Finally, the model is applied to the simulation of interaction between waves and a submerged horizontal circular cylinder.The effects of the KC number and the cylinder depth on the wave forces are studied.  相似文献   

6.
首次为整个东中国海设计出一种自适应网格 ,利用自适应网格能同时兼顾网格的光滑性、正交性及疏密程度的特点 ,得到了物理平面上的网格分布。该网格既与边界适应 ,又在水深变化急剧的东海陆坡处得以加密 ,从而使坐标变换下的三维模式成功实现了跨越陆坡的计算。用该模式模拟了海域的潮汐变化。依据所得结果绘制出 M2 分潮的同潮图和潮流椭圆。模拟结果与现有的数值研究结果基本一致 ,表明此模式在该海域的适用性  相似文献   

7.
越洋海啸的数值模拟及其对我国的影响分析   总被引:7,自引:2,他引:5  
简要介绍了地震海啸产生的物理机制、海啸波在大洋中的传播特性以及海啸所具有的超强破坏力可能引发的巨大灾害;概述了全球地震海啸发生的频率和太平洋区域历史海啸的时空分布;整理分析了我国沿海发生海啸的频次和空间分布。针对越洋海啸传播的特点,采用基于波浪追逐原理和自适应网格加密技术的海啸数值模型对1960智利海啸进行了数值模拟,将模拟的结果与历史记录进行了对比,验证了模型的可靠性。通过对数值模拟结果的分析,初步讨论了我国沿海地区越洋海啸的危险性,并定量阐述了越洋海啸对我国各海区的影响。  相似文献   

8.
The performance of interFoam (a widely used solver within OpenFOAM package) in simulating the propagation of water waves has been reported to be sensitive to the temporal and spatial resolution. To facilitate more accurate simulations, a numerical wave tank is built based on a Navier–Stokes model, which employs the VPM (volume-average/point-value multi-moment) scheme as the fluid solver and the THINC/QQ method (THINC method with quadratic surface representation and Gaussian quadrature) for the free-surface capturing. Simulations of regular waves in an intermediate water depth are conducted and the results are assessed via comparing with the analytical solutions. The performance of the present model and interFoam solver in simulating the wave propagation is systematically compared in this work. The results clearly demonstrate that compared with interFoam solver, the present model significantly improves the dissipation properties of the propagating wave, where the waveforms as well as the velocity distribution can be substantially maintained while the waves propagating over long distances even with large time steps and coarse grids. It is also shown that the present model requires much less computation time to reach a given error level in comparison with interFoam solver.  相似文献   

9.
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics (CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom (3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step. The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes (sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.  相似文献   

10.
基于推板造波理论和摇板造波理论,在Open FOAM平台上采用重叠网格技术建立黏性数值波浪水槽,并使用一种结合SIMPLE算法和PISO算法的PIMPLE算法对数值模型进行求解。利用开发的数值模型通过数值收敛性测试和网格独立性测试分别重点研究了时间步长、库朗数和网格尺寸对数值精度和计算效率的影响。并对比研究了此数值模型分别嵌入层流模型和湍流模型的计算精度和计算效率。实现的规则波和二阶有限振幅波与理论结果和试验结果吻合,验证了此黏性数值波浪水槽的造波和主动消波功能。基于二维数值波浪水槽,进一步研究了三维数值造波,数值计算结果与理论结果吻合良好。研究结果不仅验证了重叠网格在二维和三维两相流体域中求解运动物体与流场交互的可靠性和正确性,而且为使用此黏性数值波浪水槽解决更复杂的海洋工程问题提供了依据。  相似文献   

11.
A time-domain simulation method based on potential flow model has been developed to investigate the berthing problem between two floating bodies in wave. The boundary value problem is formulated with respect to an earth-fixed coordinate system because the relative positions of the two vessels continuously change during the berthing operation. The classical finite element method is used to solve the Laplace equation in the fluid domain with moving boundary. The linearized free-surface boundary conditions are integrated in time by applying 4th-order Adams–Bashforth–Moulton method. A simple re-mesh algorithm with local and global mesh systems is introduced to update mesh by considering large horizontal movement of the berthing vessel. The developed numerical method is used to investigate the berthing problem between a FPSO and shuttle tanker in waves. The focus is on the wave-induced motion response during the berthing process. The characteristics of the motion responses in berthing operation are examined with various wave frequencies, berthing speeds and wave headings.  相似文献   

12.
A one-dimensional high-resolution finite volume model capable of simulating storm waves propagating in the coastal surf zone and overtopping a sea wall is presented. The model (AMAZON) is based on solving the non-linear shallow water (NLSW) equations. A modern upwind scheme of the Godunov-type using an HLL approximate Riemann solver is described which captures bore waves in both transcritical and supercritical flows. By employing a finite volume formulation, the method can be implemented on an irregular, structured, boundary-fitted computational mesh. The use of the NLSW equations to model wave overtopping is computationally efficient and practically flexible, though the detailed structure of wave breaking is of course ignored. It is shown that wave overtopping at a vertical wall may also be approximately modelled by representing the wall as a steep bed slope. The AMAZON model solutions have been compared with analytical solutions and laboratory data for wave overtopping at sloping and vertical seawalls and good agreement has been found. The model requires more verification tests for irregular waves before its application as a generic design tool.  相似文献   

13.
浅海中的宽带水声信号传播呈现出频散的特点,通过高分辨率的时频分析方法可以刻画频散曲线。通过数值仿真和实验数据处理,对比分析几类常用的时频分析方法在提取宽带声信号频散曲线方面的性能。结果表明:STFT时频局部化精度不够高;在较强频散的情况下,DSTFT时频分辨率较高。WVD时频聚集性最好,但是有严重的交叉项干扰;固定核函数的CWD较好地抑制交叉项,时频分辨率虽优于STFT,但弱化了时频聚集性;AOK时频分布采用自适应高斯核函数,在抑制交叉项的同时,时频聚集性较好,有望较好地用于提取信号频散曲线。  相似文献   

14.
Linear and second-order surface wave interactions with floating and bottom-mounted bodies of realistic geometry are simulated in the time domain by a three-dimensional Rankine panel method. The fundamental stability analysis governing the propagation of transient wave disturbances on a panel mesh distributed on the free surface is carried out from first principles. The radiation condition is enforced by a dissipative beach selected to coincide with an outer annulus of panels. The fundamental physics governing the wave energy absorption is presented and the beach attributes are selected and validated for the linear and second-order problems. Computations are presented of the linear and sum-frequency second-order forces on a single and multiple truncated circular cylinders, and very good agreement is found with benchmark computations. The accuracy and efficiency of this method render it a promising candidate for the study of complex nonlinear wave induced phenomena upon offshore platforms, like springing and ringing.  相似文献   

15.
Wave-tide-surge coupled simulation for typhoon Maemi   总被引:1,自引:0,他引:1  
The main task of this study focuses on studying the effect of wave-current interaction on currents, storm surge and wind wave as well as effects of current induced wave refraction and current on waves by using numerical models which consider the bottom boundary layer and sea surface roughness parameter for shallow and smooth bed area around Korean Peninsula. The coupled system (unstructured-mesh SWAN wave and ADCIRC) run on the same unstructured mesh. This identical and homogeneous mesh allows the physics of wave-circulation interactions to be correctly resolved in both models. The unstructured mesh can be applied to a large domain allowing all energy from deep to shallow waters to be seamlessly followed. There is no nesting or overlapping of structured wave meshes, and no interpolation is required. In response to typhoon Maemi (2003), all model components were validated independently, and shown to provide a faithful representation of the system’s response to this storm. The waves and storm surge were allowed to develop on the continental shelf and interact with the complex nearshore environment. The resulting modeling system can be used extensively for prediction of the typhoon surge. The result show that it is important to incorporate the wave-current interaction effect into coastal area in the wave-tide-surge coupled model. At the same time, it should consider effects of depth-induced wave breaking, wind field, currents and sea surface elevation in prediction of waves. Specially, we found that: (1) wave radiation stress enhanced the current and surge elevation otherwise wave enhanced nonlinear bottom boundary layer decreased that, (2) wind wave was significantly controlled by sea surface roughness thus we cautiously took the experimental expression. The resulting modeling system can be used for hindcasting (prediction) the wave-tide-surge coupled environments at complex coastline, shallow water and fine sediment area like areas around Korean Peninsula.  相似文献   

16.
The shock wave and cavitation are main effects in the far-field underwater explosion, which could cause serious damage to marine structures. In this paper, the fluid mechanical behavior of blast load is described by the propagation of pressure wave. The acoustic pressure caused by far-field explosion is determined by solving the wave equation, where a strongly discontinuous axisymmetric numerical model is established with the local discontinuous Galerkin (LDG) method. The model can calculate the dynamic pressure in the fluid field and capture the high-resolution shock wave. The pressure cutoff model is employed to deal with the cavitation effect due to the reflection of the shock wave. The numerical model is verified by comparing with the analytical solution of the cavitation effect near the structure in one dimension. With the same mesh discretization, the present model shows higher precision than the results calculated by the acoustic finite element method. In addition, the propagation of shock wave in the cylindrical water column is studied. Finally, the formation, growth and collapse of the cavitation region near the free surface are simulated. The LDG model can remove the spurious oscillations behind the shock front and it’s more accurate than the results of the acoustic finite element method, in terms of capturing the sharpness of shock wave and calculating the shock and cavitation loading. And the present model can be applied to calculate the structural damage caused by shock wave in three dimensions.  相似文献   

17.
《Coastal Engineering》2005,52(6):513-533
Using the perturbation method, a time dependent parabolic equation is developed based on the elliptic mild slope equation with dissipation term. With the time dependent parabolic equation employed as the governing equation, a numerical model for wave propagation including dissipation term in water of slowly varying topography is presented in curvilinear coordinates. In the model, the self-adaptive grid generation method is employed to generate a boundary-fitted and varying spacing mesh. The numerical tests show that the effects of dissipation term should be taken into account if the distance of wave propagation is large, and that the outgoing boundary conditions can be treated more effectively by introduction of the dissipation term into the numerical model. The numerical model is able to give good results of simulating wave propagation for waters of complicatedly boundaries and effectively predict physical processes of wave propagation. Moreover, the errors of the analytical solution deduced by Kirby et al. (1994) [Kirby, J.T., Dalrymple, R.A., Kabu, H., 1994. Parabolic approximation for water waves in conformal coordinate systems. Coastal Engineering 23, 185–213.] from the small-angle parabolic approximation of the mild-slope equation for the case of waves between diverging breakwaters in a polar coordinate system are corrected.  相似文献   

18.
This study aims to present an evaluation and implementation of a high-resolution SWAN wind wave hindcast model forced by the CFSR wind fields in the west Mediterranean basin, taking into account the recent developments in wave modelling as the new source terms package ST6. For this purpose, the SWAN model was calibrated based on one-year wave observations of Azeffoune buoy (Algerian coast) and validated against eleven wave buoys measurements through the West Mediterranean basin. For the calibration process, we focused on the whitecapping dissipation coefficient Cds and on the exponential wind wave growth and whitecapping dissipation source terms. The statistical error analysis of the calibration results led to conclude that the SWAN model calibration corrected the underestimation of the significant wave height hindcasts in the default mode and improved its accuracy in the West Mediterranean basin. The exponential wind wave growth of Komen et al (1984) and the whitecapping dissipation source terms of Janssen (1991) with Cds = 1.0 have been thus recommended for the western Mediterranean basin. The comparison of the simulation results obtained using this calibrated parameters against eleven measurement buoys showed a high performance of the calibrated SWAN model with an average scatter index of 30% for the significant wave heights and 19% for the mean wave period. This calibrated SWAN model will constitute a practical wave hindcast model with high spatial resolution (˜3 km) and high accuracy in the Algerian basin, which will allow us to proceed to a finer mesh size using the SWAN nested grid system in this area.  相似文献   

19.
Prediction of wave parameters by using fuzzy logic approach   总被引:2,自引:0,他引:2  
The purpose of this study is to investigate the relationship between wind speed, previous and current wave characteristics. It is expected that such a non-linear relationship includes some uncertainties. A fuzzy inference system employing fuzzy IF–THEN rules has an ability to deal with ill-defined and uncertain systems. Compared with traditional approaches, fuzzy logic is more efficient in linking the multiple inputs to a single output in a non-linear domain. In this paper, a sophisticated intelligent model, based on Takagi–Sugeno (TS) fuzzy modeling principles, was developed to predict the changes in wave characteristics such as significant wave height and zero up-crossing period due to the wind speed. Past measurements of significant wave height values and wind speed variables are used for training the adaptive model and it is then employed to predict the significant wave height amounts for future time intervals such as 1, 3, 6 and 12 h. The verification of the proposed model is achieved through the wave characteristics time series plots and various numerical error criterias. Also the model results were compared with classical Auto Regressive Moving Average with exogenous input (ARMAX) models. For the application of the proposed approach the offshore station located in the Pacific Ocean was used.  相似文献   

20.
基于高阶边界元的三维数值波浪港池--波浪破碎的模拟   总被引:5,自引:1,他引:4  
在势流理论的框架内,采用高阶边界元方法和混合欧拉-拉格朗日法,实现了对三维波浪破碎过程的数值模拟.数值模型使用可调节时间步长的基于二阶显式泰勒展开的混合欧拉-拉格郎日时间步进来求解自由表面的演化过程.在所使用的边界元方法中,采用16节点三次滑移四边形单元来表示,这种单元在单元内具有高阶的精度同时在单元之间具有良好的连续性.给出了孤立波的传播和周期性非线性波浪沿缓坡传播的计算结果,表明数值模型具有良好的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号