首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unsteady response of an ice cover in a channel with vertical walls is studied for large times. The ice deflection is caused by a load moving along the frozen channel at a constant speed. The ice cover is modelled as a thin elastic plate clamped to the walls of the channel. The time-dependent problem is solved by using the Fourier transform along the channel and the method of separating variables. In the system moving along the channel together with the load, the large-time deflection of the ice cover consists of steady deflection and standing waves in front and behind the load. The number of waves, their frequencies and wavenumbers depend on the speed of the load and the values of the critical speeds for the channel. The number of the waves and their amplitudes are calculated for a given load and its speed. The maximum stress in the ice as a function of the load speed is estimated.  相似文献   

2.
Strains in the ice cover of a frozen channel, which are caused by a body moving under the ice at a constant speed along the channel, are studied. The channel is of rectangular cross section, the fluid in the channel is inviscid and incompressible. The ice cover is modeled by a thin viscoelastic plate clamped to the channel walls. The underwater body is modeled by a three-dimensional dipole. The intensity of the dipole is related to the speed and size of the underwater body. The problem is considered within the linear theory of hydroelasticity. For small deflections of the ice cover the velocity potential of the dipole in the channel is obtained by the method of images without account for ice deflection in the leading order. The problem of a dipole moving in the channel with rigid walls provides the hydrodynamic pressure on the upper boundary of the channel, which corresponds to the ice cover. This pressure distribution does not depend on the deflection of the ice cover in the leading approximation. The deflections of ice and the strains in the ice cover are independent of time in the coordinate system moving together with the dipole. The problem is solved numerically using the Fourier transform along the channel, the method of normal modes across the channel, and the truncation method for resulting infinite systems of linear equations. It was revealed that the strains in the ice strongly depend on the speed of the dipole with respect to the critical speeds of the hydroelastic waves propagating along the frozen channel. The width of the channel matters even it is much larger than the characteristic length of the ice cover.  相似文献   

3.
The problem of a uniform current passing through a circular cylinder submerged below an ice sheet is considered. The fluid flow is described by the linearized velocity potential theory, while the ice sheet is modelled through a thin elastic plate floating on the water surface. The Green function due to a source is first derived, which satisfies all the boundary conditions apart from that on the body surface. Through differentiating the Green function with respect to the source position, the multipoles are obtained. This allows the disturbed velocity potential to be constructed in the form of an infinite series with unknown coefficients which are obtained from the boundary condition. The result shows that there is a critical Froude number which depends on the physical properties of the ice sheet. Below this number there will be no flexural waves propagating to infinity and above this number there will be two waves, one on each side of the body. When the depth based Froude number is larger than 1, there will always be a wave at far upstream of the body. This is similar to those noticed in the related problem and is different from that in the free surface problem without ice sheet. Various results are provided, including the properties of the dispersion equation, resistance and lift, ice sheet deflection, and their physical features are discussed.  相似文献   

4.
In this paper, an exact analytical method is developed for the problem of wave radiation by a uniform cylinder in front of a vertical wall. Based on the image principle, the hydrodynamic problem of a cylinder in front of a vertical wall is transformed into the equivalent problem of double cylinders in unbounded fluid domain. Consequently, an analytical method of eigenfunction expansion is adopted to calculate the radiation of the cylinder due to the motion in surge, sway, roll and pitch, respectively. Moreover, numerical analysis has been carried out in detail in order to discuss the influences of the distance between the cylinder and the vertical wall and water depth on the added mass and radiation damping of the cylinder. It is shown that added mass and damping of the cylinder in front of a vertical wall are evidently different from those in case of the cylinder in unbounded fluid domain from the numerical results. It is also found that the added mass and radiation damping oscillate with wave number, and the oscillating frequency increases with the increasing of the distance between the cylinder and the wall.  相似文献   

5.
Most off-shore oil platforms are supported by vertical cylinders extending to the ocean floor. An important problem in off-shore engineering is the calculation of the wave loading exerted on these vertical cylinders. Analytical solutions have been found for the case of plane incident waves incident on a circular cylinder by MacCamy and Fuchs [(1954), Wave forces on piles: a diffraction theory. U.S. Army Corps of Engineering, Beach Erosion Board, Technical Memorandum No. 69] and also for short-crested waves incident on a circular cylinder by Zhu [(1993), Diffraction of short-crested waves around a circular cylinder. Ocean Engng 20, 389–407]. However, for a cylinder of arbitrary cross-section, no analytic solutions currently exist. Au and Brebbia [(1983), Diffraction of water waves for vertical cylinders using boundary elements. Appl. Math. Modelling 7, 106–114] proposed an efficient numerical approach to calculate the wave loads induced by plane waves on vertical cylinders by using the boundary element method. However, wind-generated waves are better modelled by short-crested waves. Whether or not these short-crested waves can induce larger wave forces on a structure is of great concern to ocean engineers. In this paper wave loads, induced by short-crested incident waves, on a vertical cylinder of arbitrary cross-section are discussed. For a cylinder of certain cross-section, the wave loads induced by short-crested waves can be larger than those induced by plane waves with the same total wave number.  相似文献   

6.
A non-linear coupled-mode system of horizontal equations is presented, modelling the evolution of nonlinear water waves in finite depth over a general bottom topography. The vertical structure of the wave field is represented by means of a local-mode series expansion of the wave potential. This series contains the usual propagating and evanescent modes, plus two additional terms, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The present coupled-mode system fully accounts for the effects of non-linearity and dispersion, and the local-mode series exhibits fast convergence. Thus, a small number of modes (up to 5–6) are usually enough for precise numerical solution. In the present work, the coupled-mode system is applied to the numerical investigation of families of steady travelling wave solutions in constant depth, corresponding to a wide range of water depths, ranging from intermediate depth to shallow-water wave conditions, and its results are compared vs. Stokes and cnoidal wave theories, as well as with fully nonlinear Fourier methods. Furthermore, numerical results are presented for waves propagating over variable bathymetry regions and compared with nonlinear methods based on boundary integral formulation and experimental data, showing good agreement.  相似文献   

7.
This paper addresses a numerical investigation of nonlinear waves interactions with an array of two surface-piercing vertical cylinders and the corresponding nonlinear hydrodynamic loads on each individual cylinder. The primary interest of this study is concentrated on the problem of three-dimensional scattering of solitary waves by cylinder arrays and the nonlinear interactions between scattered waves. The theoretical model adopted for simulation is the generalized Boussinesq two-equation model. The boundary-fitted coordinate transformation and multiple-grid technique are utilized here to simplify the computation domain and to facilitate the applications of the boundary conditions on the cylinder surfaces. The velocity potential, free-surface elevation and subsequent evolution of the scattered wave field are numerically evaluated. The hydrodynamic forces on each cylinder during wave impact are also determined. A study of the sheltering effect by the neighboring structures on wave loads is conducted. It is found that the presence of the neighboring cylinder has shown significant influence on the wave loads and the scattering of the primary incident waves. For two transversely arranged cylinders, the transverse force coefficient increases as the separation distance decreases.  相似文献   

8.
The purpose of this research work is to study the effect of specific surface s, the fluid–solid contact surface per volume unit, on the wave energy dissipation by porous structures consisting in dense arrays of emergent vertical cylinders. Experiments have been carried out in a 10 m long wave flume. Three cylinder diameters D are considered in order to study the effects of the specific surface while keeping the porosity constant. In a first series, the length of the porous zone is kept constant for the three cylinder diameters tested. The measurements, which include various wave steepness conditions, demonstrate the role of specific surface s on both wave attenuation and interference processes. The larger the specific surface is, the stronger the wave damping is. Damping is found to be almost proportional to 1/D when laminar, turbulent and inertial effects are of same order. Results are compared to numerical calculations based on either a constant rate of wave damping within the porous medium per unit wavelength or a quadratic damping developed using a force expression based on the work of [26]. This latter model, calibrated with drag and inertia coefficients, shows a good agreement with measurements. In a second series, both porous length and water depth are kept proportional to the cylinder diameter for the three diameters. Scale effects are then discussed and underline the importance of the flow regime within the porous medium.  相似文献   

9.
The hydroelastic response of a circular, very large floating structure (VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the plate-covered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presentedto investigate the effects of different physical quantities, such as the thickness of the plate, Young's modulus, the ratios ofthe densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid.Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.  相似文献   

10.
Local scour around a submerged vertical circular cylinder in steady currents was studied both experimentally and numerically. The physical experiments were conducted for two different cylinder diameters with a range of cylinder height-to-diameter ratios. Transient scour depth at the stagnation point (upstream edge) of the cylinder was measured using the so-called conductivity scour probes. Three-dimensional (3D) seabed topography around each model cylinder was measured using a laser profiler. The effect of the height-to-diameter ratio on the scour depth was investigated. The experimental results show that the scour depth at the stagnation point is independent on cylinder height-to-diameter ratio when the later is smaller than 2. The increase rate of equilibrium scour depth with cylinder height increases with an increase in Shields parameter.  相似文献   

11.
The concept of modeforming with a vertical line array for active target detection in a reverberation-limited shallow-water environment is explored. The concept is based on the hypothesis that, in certain environments, the reverberation field is due to subbottom scattering and the reverberant energy is carried by the higher order modes; on the other hand, the targets in the water column are contained in the lower order modes. Under these conditions, isolation of a low-order mode, or a selected set of modes, with a vertical array could substantially increase the target-to-reverberation ratio. The optimum mode depends greatly on the environmental conditions and the depth of the target. Modeforming is achieved by deriving a spatial filter function that depends on the receiving array and the local environment  相似文献   

12.
Wave reflection by a vertical wall with a horizontal submerged porous plate   总被引:3,自引:0,他引:3  
By applying the linear water wave theory and the eigenfunction expansion method, the wave reflection by a vertical wall with a horizontal submerged porous plate is investigated in this paper. The numerical results, concerning the effects of the dimensionless plate length, the relative water depth, and the porous effect parameter of the plate on the wave loads on the plate and the wave height near the wall as well as the reflection coefficient, are discussed. It is found that the submerged plate increases the complexity of the phenomenon related to the wave reflection and refraction in the close region of the wall, and leads to the occurrence of the phenomenon of wave trapping. The results indicate that there may exist a process of focusing wave energy near the wall for small dimensionless porous effect parameters, whereas the increase of the dimensionless porous effect parameter decreases gradually the wave height until setdown occurs. The behavior of a larger plate with proper porosity is similar to that of a wave absorber which can significantly suppress not only the wave height above the plate but also the reflection waves. The ability of the porous plate to reduce the wave height on the wall surface is, in general, directly proportional to the dimensionless plate length and may be strongest for a proper value of the dimensionless porous effect parameter. It is also demonstrated that the wave loads on a porous plate are smaller than those on an impermeable plate.  相似文献   

13.
The problem of the forced horizontal oscillations of a vertical cylinder extending throughout the fluid depth is considered on the basis of the linearised theory of water waves. A new integral form is given for the frequency-domain solution and the procedure is then used to obtain an explicit time-domain solution.  相似文献   

14.
The deployment of suitable configurations of mutually interacting floating bodies for efficiently controlling their hydrodynamic interactions towards the reduction of the wave drift forces and, thus, of the mooring lines’ loads, has, nowadays, gained a great scientific interest. In this paper, the hydrodynamic behaviour of a floating cylinder and a concentric annular flexible plate is analysed in the frequency domain aiming at the minimization of the drift forces acting on the cylinder by optimizing the flexural rigidity of the plate. The diffraction/radiation problem is solved using a higher-order boundary element method. The analysis is implemented assuming that both floating bodies oscillate freely in heave, while for the plate, flexible modes are, additionally, considered for describing its structural deformations. The required modes shapes are determined in vacuum (“dry” mode superposition approach) through analytical expressions. The flexural rigidity of the plate, D, is optimized at a specific wave number using a real-coded genetic algorithm. Initially, results are compared with numerical results of other investigators for the case of two rigid concentric floating cylinders. Next, extended results are presented, focusing on the effect of D, including its optimum value, on various physical quantities describing the behaviour of both the cylinder and the plate. Contrary to the isolated cylinder, the presence of the plate introduces sharp peaks in the variation pattern of the drift force of the cylinder, bounded at specific wave numbers, where resonance of the seiche mode of water motion in the annular cavity or of specific flexible modes of the plate occurs. However, by reducing D to its optimum value, the cylinder’s drift force obtains practically zero values at the target wave number, due to an efficient improvement of the wave field in the annular cavity around the cylinder. Moreover, a great reduction of the drift force compared to the isolated cylinder is achieved in the subsequent high frequency range.  相似文献   

15.
We analyze the influence of a rift in an ice field on the propagation of flexural gravitational waves in a basin of finite constant depth. The ice cover is simulated by two floating semiinfinite elastic plates of different thickness. We studied the dependence of the amplitude coefficients of reflection and transmission of waves incident on the rift on the frequency of running waves, the thickness of ice on both sides of the rift, and the type of contact boundary conditions at the rift. Translated by Peter V. Malyshev and Dmitry, V. Malyshev  相似文献   

16.
基于微幅波绕射理论,应用特征函数展开法,推导了双层直立圆弧型透空防波堤的波浪绕射解析解,从而将已有的比例边界有限元法拓展为解析算法,并据此对外层与内层防波堤所受波浪载荷进行了解析计算。计算结果表明:应用本文方法对直立透空圆环柱的绕射波浪载荷进行验证计算,所得结果与现有的解析解完全吻合,说明方法可靠。双层堤较单层堤能更有效地减弱波浪作用。波浪的入射角度和特征参数、防波堤张角与半径、防波堤透空系数以及水深等因素的相对变化对双层堤的波浪作用均存在一定影响。  相似文献   

17.
海冰在结构前的破坏模式以及产生的冰载荷与结构尺度和海冰厚度密切相关。采用海冰离散元方法(DEM)模拟平整冰与直立结构相互作用过程中的海冰破坏模式及整体冰载荷。该离散元方法的计算参数通过与Norstr?msgrund灯塔的现场实测数据对比进行了可靠性验证。在此基础上,对不同宽厚比(结构宽度与海冰厚度的比值)工况下平整冰与直立结构作用过程中的海冰破坏模式和整体冰压力进行了离散元分析。模拟结果表明:当宽厚比<10时,海冰破坏模式主要为挤压破坏;当10≤宽厚比<30时,海冰混合破坏发生;当宽厚比≥30时,海冰屈曲破坏发生。从海冰断裂长度与平均冰压力两个方面进一步说明了海冰破坏模式的转变过程。最后,构建了直立结构极值冰压力计算公式。研究成果可为寒区直立结构的整体设计提供参考。  相似文献   

18.
In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid inelude not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and interhal-wave modes, and transfer of energy between modes.  相似文献   

19.
S. V. Muzylev 《Oceanology》2006,46(4):465-471
Edge waves in an ice-covered sea at a straight coast with a sloping beach are analyzed within the linearized theory. Such waves propagate along the coast with an amplitude which exponentially decays offshore. The problem is examined without using the hydrostatic assumption. The seawater is considered to be a homogeneous, inviscid, nonrotating, and incompressible fluid. Ice with a uniform thickness is considered, with constant values of density, cylindrical rigidity, Poisson ratio, and compressive stress in the ice. The normal velocity at the bottom is zero; the linearized kinematic and dynamic boundary conditions are satisfied at the lower surface of the ice. Explicit solutions for the edge flexural-gravity waves and the corresponding dispersion equations are obtained and analyzed.  相似文献   

20.
The wave forces and moments on and the water surface fluctuations around a vertical circular cylinder encircled by a perforated square caisson were experimentally investigated. The porosity of the outer square caisson was varied from 4.24 to 14.58%. The in-line wave forces on the inner vertical cylinder are influenced by changing the porosity of the outer caisson, whereas the variations in the water surface fluctuations are less influenced in this porosity range. The in-line moment on the vertical cylinder is relatively less sensitive when the porosity is increased from 4.24 to 8.75%, but varies substantially when it is increased from 8.75 to 14.58%. The force and moment ratio (i.e. the ratio of the force or moment on the vertical cylinder, when it is encircled by the perforated caisson to the force or moment on the cylinder without any protection around it) reduces with increased wave height, H, and wave length, L, whereas the wave height ratio (ratio of the wave height at a point in the vicinity of the structure to the incident wave height) is less sensitive for the varying H and L. A new non-dimensional parameter, p1.5 (D/L)/(H/d), is introduced to predict the in-line force and moment on the inner vertical cylinder, where d is local water depth, D is the diameter of the inner cylinder and p is the porosity of the outer caisson in percentage. Simple predictive equations for forces, moments and water surface fluctuations are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号