首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Analysis of a craft with two degrees of freedom (2DOF) consumes time more than simulation of a craft with a fixed trim condition; therefore in most of the previous researches fixed trim condition is taken into account to analyze the flow field around a craft in shallow water and head sea wave conditions. In this paper numerical simulation of Reynolds Average Naiver Stokes (RANS) equations are used to analyze the motion of DTMB 62 model 4667-1 planing vessel in calm water and head sea waves in both deep and shallow water with two degrees of freedom (heave and pitch). For this purpose, a finite volume ANSYS-FLUENT code is used to solve the Navier-Stokes equations for the simulation of the flow field around the vessel. In addition, an explicit VOF scheme and SST k-ω model is used with dynamic mesh scheme to capture the interface of a two-phase flow and to model the turbulence respectively in the 2DOF model.Regarding the results, reducing the wavelength and also the depth of the water can increase the drag force. Also comparing the results of a fixed trim vessel with the results of a free to sink and trim one in calm water shows a difference of approximately 50% in the drag force in shallow water.  相似文献   

2.
Green–Naghdi (GN) theory is a fully nonlinear wave theory which has been used with success to simulate nonlinear water waves. In previous applications of GN theory to water wave problems the ocean bottom was assumed to be time invariant. In this work no such restriction is made and GN theory is used to simulate tsunami caused by bottom fluctuation. As first test cases we simulate two-dimensional nonlinear surface waves generated by positive bottom movements. The results in the generation region for three different seabed movements compare well against earlier experimental data. The results in the downstream region for impulsive seabed movements show some discrepancies in wave phase and amplitude compared with earlier experimental values. It is suspected that the viscous effects may have played a role. The GN theory is then used to study three-dimensional near-field tsunami amplitudes caused by submarine landslides and slumps spreading in two orthogonal directions. The GN results agree with previous linear solution very well when the ratio of the velocities is v1/v2=1.0. But GN theory give more believable results for the case of vT/v=0.1 and v1/v2=0.1.  相似文献   

3.
Vessels operating in shallow waters require careful observation of the finite-depth effect. In present study, a Rankine source method that includes the shallow water effect and double body steady flow effect is developed in frequency domain. In order to verify present numerical methods, two experiments were carried out respectively to measure the wave loads and free motions for ship advancing with forward speed in head regular waves. Numerical results are systematically compared with experiments and other solutions using the double body basis flow approach, the Neumann-Kelvin approach with simplified m-terms, and linearized free surface boundary conditions with double-body m-terms. Furthermore, the influence of water depths on added mass and damping coefficients, wave excitation forces, motions and unsteady wave patterns are deeply investigated. It is found that finite-depth effect is important and unsteady wave pattern in shallow water is dependent on both of the Brard number τ and depth Froude number Fh.  相似文献   

4.
《Coastal Engineering》2006,53(9):711-722
In this paper it will be shown that the wave height parameter H50, defined as the average wave height of the 50 highest waves reaching a rubble-mound breakwater in its useful life, can describe the effect of the wave height on the history of the armor damage caused by the wave climate during the structure's usable life.Using Thompson and Shuttler (Thompson, D.M., Shuttler, R.M., 1975. Riprap design for wind wave attack: A laboratory study on random waves. HRS Wallingford, Report 61, UK) data it will be shown that H50 is the wave parameter that best represents the damage evolution with the number of waves in a sea state. Using this H50 parameter, formulae as van der Meer (van der Meer, J.W., 1988. Rock slopes and gravel beaches under wave attack. PhD Thesis. Technical University of Delft) and Losada and Giménez-Curto (Losada, M.A., Gimenez–Curto, L.A., 1979. The joint effect of the wave height and period on the stability of rubble mound breakwaters using Iribarren's number. Coastal Engineering, 3, 77–96) are transformed into sea-state damage evolution formulae. Using these H50-transformed formulae for regular and irregular sea states it will be shown how damage predictions are independent of the sea state wave height distribution.To check the capability of these H50-formulae to predict damage evolution of succession of sea states with different wave height distributions, some stability tests with regular and irregular waves have been carried out. After analysing the experimental results, it will be shown how H50-formulae can predict the observed damage independently of the sea state wave height distribution or the succession of sea states.  相似文献   

5.
Geostrophic response of a two-layer fluid near a straight coast is investigated for a successive disturbance by the use of the inviscid, reduced gravity model. Poincare waves, coastal motion (which is trapped by the coast) and a geostrophic eddy are created. The energy of these motions is obtained. The manner in which the ocean responds is found to depend considerably on the way the disturbance is applied. When the water is supplied continuously to a calm upper layer adjacent to the coast, a quasi-steady geostrophic eddy is formed and its energy increases in proportion toT 2 (T is the duration for which water is supplied). The energy of the coastal motion increases in proportion toT. When the water is supplied continuously into the upper layer from a certain portion of the coast, a geostrophic eddy is not formed. The coastal motion has the same structure as in the former case and its energy increases in proportion toT.  相似文献   

6.
7.
Relations between sea-surface temperature (T s) and heat flux at the sea surface (F) have been investigated using data from ocean observation buoys located off Shikoku in the Sea of Japan and in the East China Sea. Wavelet transformation decomposed F and T s to wavelet coefficients (WLC) in the period-time domain. Assuming one-dimensional heat transfer by eddy diffusion in the upper ocean, the phase difference (δθ) defined as the difference between the phase of the temporal change rate of T s, and the phase of F ranges statistically from 0 to +π/4 when F changes T s, and is around −π/2 when heat convergence in the sea (Av) forces T s. The δθ values are distributed from 0 to +π/4 at one-day and one-year periods at all buoys. WLC amplitude (WLCA) of F at periods from 16 to 32 day periods, which may be caused by the atmospheric ridge-trough systems, maintains energy longer than WLCA at periods from 2 to 16 days, which may be caused by monsoonal surges. At periods from 2 to 64 days, δθ values distribute from 0 to +π/4 or around −π/2 at each event, reflecting the surroundings of each ocean, i.e., Kuroshio recirculation in the off-Shikoku area, water-temperature front in the Sea of Japan, and water exchange in the continental shelf edge in the East China Sea. We demonstrate that the wavelet analysis can characterize the correspondence between irregular signals of F and T s in various time scales and locations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Airy waves have a sinusoidal profile in deep water that can be modeled by a time series at any point x and time t, given by η(x,t) = (Ho/2) cos[2πx/Lo − 2πt/Tw], where Ho is the deepwater height, Lo is the deepwater wavelength, and Tw is the wave period. However, as these waves approach the shore they change in form and dimension so that this equation becomes invalid. A method is presented to reconstruct the wave profile showing the correct wavelength, wave height, wave shape, and displacement of the water surface with respect to the still water level for any water depth.  相似文献   

9.
戴德君  王忠  王伟 《海洋与湖沼》2000,31(6):676-681
孙孕等(1994)提出了外频谱的概念,并推导出外频谱的理论形式,但其控制参量是由内频谱导出的,不便于实际应用,通过对实测海浪数据的分析,得到了控制外频谱的3个和内频谱有关的参量与波浪要素之间的关系,进而将外频谱表示以有效波高和有效波周期作为控制参量的形式,应用实测资料将本文得到的外频谱形式与理论外频谱进行了比较,发现二者符合良好。  相似文献   

10.
This study, using laboratory experiments and scaling analysis, evaluates the influence of geothermal heating on global oceanic circulation. Upon a well-developed large-scale convective flow, an additional heat flux perturbation δF/F is employed. The increments of flow and thermal properties, including eddy diffusivity KT, flow velocity V and bottom temperature Tb, are found to be independent of the applied heat flux F. Together with the scaling analysis of convective flow at different configurations, where the flow is thermally driven in the relatively low or extremely high turbulent thermal convections or the horizontal convection, the variances of flow properties, δKT/KT and δV/V, are found to be close to 0.5% and 0.75% at δF/F=2%. This means that the small heat flux perturbation plays a negligible role in the global convective flow. However, δTb/ΔT is found to be 1.5% at δF/F=2%, which would have a significant effect in the local region. The results might provide a clue to understanding the influence of geothermal heating on global oceanic circulation. It is expected that geothermal heating will contribute less than 1% in turbulent mixing and volume flux to global oceanic circulation, so its influence can be negligible in this situation. However, when it comes to the local environment, the influence of geothermal heating cannot be ignored. For example, temperature increases of about 0.5°C with geothermal heating would have a significant effect on the physical environments within the benthic boundary layer.  相似文献   

11.
The frequency spectrum of surface elevations in the presence of wind waves is well known. On this basis, one can estimate the frequency spectrum of vertical velocities in sea-surface waves. Owing to liquid incompressibility, the spectrum of horizontal velocities should have the same frequency dependence. The use of the dispersion equation for waves on the surface of a heavy liquid allows one to obtain to the spatial spectrum of velocities. Therefore, one can estimate the spatial structure function of the velocity field. For short waves and large depths, the structure function increases as r 1/2, where r is the distance between the points of observations. For long waves and shallow depths h, this increase is proportional to r. The coefficient of turbulent mixing K(r) of pollution spots of size r on the sea surface is now estimated as the product of the spot size and the rms difference of velocities. As a result, depending on r and h, the exponent in the r n dependence of K(r) may vary between 1.25 and 1.5. This outcome provides an explanation for a scatter in the values of the exponent n, a phenomenon that has been observed by many experimentalists.  相似文献   

12.
Results obtained from simulating the propagation of infrasonic waves from the Chelyabinsk meteoroid explosion observed on February 15, 2013, are given. The pseudodifferential parabolic equation (PDPE) method has been used for calculations. Data on infrasonic waves recorded at the IS31 station (Aktyubinsk, Kazakhstan), located 542.7 km from the likely location of the explosion, have been analyzed. Six infrasonic arrivals (isolated clearly defined pulse signals) were recorded. It is shown that the first “fast” arrival (F) corresponds to the propagation of infrasound in a surface acoustic waveguide. The rest of the arrivals (T1–T5) are thermospheric. The agreement between the results of calculations based on the PDPE method and experimental data is satisfactory. The energy E of the explosion has been estimated using two methods. One of these methods is based on the law of conservation of the acoustic pulse I, which is a product of the wave profile area S/2 of the signal under analysis and the distance to its source E I [kt] = 1.38 × 10–10 (I [kg/s])1.482. The other method is based on the relation between the energy of explosion and the dominant period T of recorded signal E T [kt] = 1.02 × (T [s]2/σ)3/2, where σ is the dimensionless distance determining the degree of nonlinear effects during the propagation of sound along ray trajectories. According to the data, the explosion energy E I,T ranges from 1.87 to 32 kt TNT.  相似文献   

13.
We describe in this paper the experimental investigations of the interaction of a bottom-pivoted vertical cylinder with water waves and flow, to determine the dominant-load-regime map by application of response step functions and response RAO. A rigid circular cylindrical mass-damper-spring oscillator system is investigated in regular waves and uniform flow to determine the response characteristics in the frequency domain. Interaction with waves dominates in the high frequency range f* = fosc/ωv = 0.862–1.547, with magnitude in the range of 0.1 rad. On the other hand, interaction with flow dominates at lower frequency range, f* = 0.442–0.862, with magnitude in the range of 0.01 rad. These are caused by the non-overlap peak positions of the magnitude response in waves and flow due to the change in added mass of the cylinder moving in different types of fluid loads. The frequency f* = 0.862 is the point where the dominant factors are transferred. The location of separation points determines the pressure distribution to induce the added mass changed. Separation positions determine the magnitude response, but do not determine the configuration of response RAO. That allows to enhance or reduce the magnitude response of the cylinder by taking advantage of the dominant-load-regime map in the frequency domain.  相似文献   

14.
Variations in the speciation of iron in the northern North Sea were investigated in an area covering at least two different water masses and an algal bloom, using a combination of techniques. Catalytic cathodic stripping voltammetry was used to measure the concentrations of reactive iron (FeR) and total iron (FeT) in unfiltered samples, while dissolved iron (FeD) was measured by GFAAS after extraction of filtered sea water. FeR was defined by the amount of iron that complexed with 20 μM 1-nitroso-2-napthol (NN) at pH 6.9. FeT was determined after UV-digestion at pH 2.4. Concentrations of natural organic iron complexing ligands and values for conditional stability constants, were determined in unfiltered samples by titration. Mean concentrations of 1.3 nM for FeR, 10.0 nM for FeT and 1.7 nM for FeD were obtained for the area sampled. FeR concentrations increased towards the south of the area investigated, as a result of the increased influence of continental run off. FeR concentrations were found to be enhanced below the nutricline (below 40 m) as a result of the remineralisation of organic material. Enhanced levels of FeT were observed in some surface samples and in samples collected below 30 m at stations in the south of the area studied, thought to be a result of high concentrations of biogenic particulate material and the resuspended sediments respectively. FeD concentrations varied between values similar to those of FeT in samples from the north of the area to values similar to those of FeR in the south. The bloom was thought to have influenced the distribution of both FeR and FeT, but less evidence was observed for any influence on FeR and FeD. The concentration of organic complexing ligands, which could possibly include a contribution from adsorption sites on particulate material, increased slightly in the bloom area and in North Sea waters. Iron was found to be fully (99.9%) complexed by the organic complexing ligands at a pH of 6.9 and largely complexed (82–96%) at pH 8. The ligands were almost saturated with iron suggesting that the ligand concentration could limit the concentration of iron occurring as dissolved species.  相似文献   

15.
We have employed laboratory and numerical experiments in order to investigate propagation of waves in both long and short-crested wave fields in deep water. For long-crested waves with steepness, ϵ = kcac = 0.1 (a fairly extreme case), reliable prediction can be performed with the modified nonlinear Schrödinger equation up to about 40 characteristic wavelengths. For short-crested waves the accuracy of prediction is strongly reduced with increasing directional spread.  相似文献   

16.
A thorough discussion of results from laboratory experiments with regular waves sheds light on the gap that lies between the sediment transport associated with ripple migration and the performance of a standard bedload transport formula in terms of bed shear concept. It is found that the extent of deviations of the bedload transport formula by Ribberink (1998) from the measured rate of sediment transport associated with ripple migration becomes systematically apparent under conditions of increasing settling time factor Ωs (= η/(w0T); η is the ripple height, w0 the settling velocity and T the wave period). Re-examination of previous two field studies demonstrates a further reinforcement for phase-lag argument addressed in this paper.  相似文献   

17.
A method for obtaining the directional spectrum, on assuming that the frequencies of the elementary waves are all different from one another, is re-proposed in a form suitable for applications to sea states near a coast. The method is applied to an interval of 10 h during which the sea state remained basically steady state off the beach at Reggio Calabria (east coast of the Straits of Messina). It is shown that the directional spectrum converges as the length of the time series data grows. A numerical simulation of a 10 h sea state confirms that the directional spectrum converges as the length of the time series grows, and the convergence is onto the known directional spectrum used to make the numerical simulation. Through the numerical simulation, it is proved that the method, generally, is suitable for applications even with short time series of wind waves (duration of about 100Tp). Finally, it is shown that the method is not necessarily inadequate even with short records of multimodal sea states with different modal directions, modal amplitude ratios and intermodal distances.  相似文献   

18.
Wave run-up on foundations is a very important factor in the design of entrance platforms for offshore wind turbines. When the Horns Reef 1 wind turbine park in Denmark was designed the vertical wave run-up phenomenon was not well known in the industry, hence not sufficiently considered in the design of Horns Reef 1. As a consequence damage was observed on the platforms. This has been the situation for several sites and design tools for platform loads are lacking. As a consequence a physical model test study was initiated at Aalborg University to clarify wave run-up on cylindrical piles for different values of diameter to water depth ratios (D/h) and different wave heights to water depth ratios (H/h) for both regular and irregular waves. A calculation model is calibrated based on stream function theory for crest kinematics and velocity head stagnation theory. Due to increased velocities close to the pile an empirical factor is included on the velocity head. The evaluation of the calculation model shows that an accurate design rule can be established even in breaking wave conditions. However, calibration of a load model showed that it was necessary to increase the run-up factor on the velocity head by 40% to take into account the underestimation of run-up for breaking or nearly breaking waves given that they produce thin run-up wedges and air entrainment, two factors not coped with by the measurement system.  相似文献   

19.
Head-wave parametric rolling of a surface combatant   总被引:1,自引:0,他引:1  
Complementary CFD, towing tank EFD, and nonlinear dynamics approach study of parametric roll for the ONR Tumblehome surface combatant both with and without bilge keels is presented. The investigations without bilge keels include a wide range of conditions. CFD closely agrees with EFD for resistance, sinkage, and trim except for Fr>0.5 which may be due to free surface and/or turbulence modeling. CFD shows fairly close agreement with EFD for forward-speed roll decay in calm water, although damping is over/under predicted for largest/smaller GM. Most importantly CFD shows remarkably close agreement with EFD for forward-speed parametric roll in head waves for GM=0.038 and 0.033 m, although CFD predicts larger instability zones at high and low Fr, respectively. The CFD and EFD results are analyzed with consideration ship motion theory and compared with Mathieu equation and nonlinear dynamics approaches. Nonlinear dynamics approaches are in qualitative agreement with CFD and EFD. The CFD and nonlinear dynamics approach results were blind in that the actual EFD radius of gyration kxx was not known a priori.  相似文献   

20.
Beach cusps with a longshore spacing of 20 to 150 cm have been built by the continuous action of incident waves on a steep laboratory beach floor covered uniformly with a thin bed of glass beads. Breaking of incident waves was observed to induce vortices on the bed by interacting with swash motion along the beach face. Beach cusps formed when the value of a dimensionless parameter Hb/sgTi2 became smaller than 0.042; Hb is the breaking height of the incident waves, Ti their period, s the beach slope and g the acceleration due to gravity. This critical value occurred at a nearly central part of the generation region 0.003 < Hb/sgTi2 < 0.068 for plunging breakers presented by Galvin (1968). Breaking-wave-induced vortices rather than breaker types controlled the movement of bed material in the nearshore zone. Most of the measured spacings of beach cusps, including previous observations, were in good agreement with half a wavelength of the zero-mode subharmonic edge wave, which is generated on the beach by the refraction of incident waves and has twice the period of the waves. The role of edge waves at each stage of cusp formation still remains as an important problem to be clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号