首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ten-day mean surface level air-temperature from SSMI precipitable water (SSMI-T a ) has been derived and compared with the temperature from two ocean data buoys (Buoy-T a ) of Japan Meteorological Agency (JMA) for a period of six months (July–December, 1988). Statistical relations between air-temperature and mixing ratio, using data from ocean data buoys are used to derive air-temperature from mixing ratio, obtained from SSMI precipitable water. For getting the mixing ratio from precipitable water, regional mixing ratio-precipitable water relations have been used, instead of global relation proposed by Liu (1986). The rms errors (standard deviation of the difference between SSMI-T a and Buoy-T a ) for two buoy locations are found to be 1.15 and 1.12°C, respectively. Surface level temperature for the two buoy locations are also derived using direct regression relation between Buoy-T a and precipitable water. The rms errors of the SSMI-T a , in this case are found to be reduced to 1.0°C.  相似文献   

2.
It is known that there is a front-like structure at the mixed layer depth (MLD) distribution in the subtropical gyre, which is called the MLD front, and is associated with the formation region of mode water. In the present article, the generation mechanism of the MLD front is studied using an idealized ocean general circulation model with no seasonal forcing. First, it is shown that the MLD front occurs along a curve where u g ·∇T s = 0 is satisfied (u g is the upper ocean geostrophic velocity vector, T s is the sea surface temperature and ∇ is the horizontal gradient operator). In other words, the front is the boundary between the subduction region (u g ·∇T s > 0) and the region where subduction does not occur (u g ·∇T s < 0). Second, we have investigated subduction of low potential vorticity water at the MLD front, which has been pointed out by past studies. Since u g ·∇T s = 0 at the MLD front, the water particles do not cross the outcrop at the MLD front. The water that is subducted at the MLD front has come from the deep mixed layer region where the sea surface temperature is higher than that at the MLD front. The temperature of the water in the deep mixed layer region decreases as it is advected eastward, attains its minimum at the MLD front where u g ·∇T s = 0, and then subducts under the warmer surface layer. Since the deep mixed layer water subducts beneath a thin stratified surface layer, maintaining its thickness, the mixed layer depth changes abruptly at the subduction location.  相似文献   

3.
Concentrations of particulate organic nitrogen (PN), dissolved inorganic nitrogen (DIN), and their nitrogen isotope ratios (δ 15N) in the Kiso-Sansen Rivers were determined from monthly observations over the course of a year to assess variations in the form and sources of riverine nitrogen discharged into Ise Bay. The δ 15N values of NO3 observed in the Kiso-Sansen Rivers showed a logarithmic decreasing trend from 8 to 0‰, which varied with the river discharge, indicating mixing between point sources with high δ 15N and non-point sources with low δ 15N. The influence of isotope fractionation of in situ biogeochemical processes (mainly DIN assimilation by phytoplankton) on δ 15N of NO3 was negligible, because sufficient concentrations of NH4 + for phytoplankton demand would inhibit the assimilation of NO3 . A simple relationship between river discharge and δ 15N of NO3 showed that the fraction of total NO3 flux arising from point sources increased from 4.0–6.3% (1.1–1.8 tN day−1) during higher discharge (>600 m3 s−1) to 30.2–48.3% (2.6–4.1 tN day−1) during lower discharge (<300 m3 s−1). Riverine NO3 discharge from the Kiso-Sansen Rivers can explain 75% of the variations in surface NO3 at the head of Ise Bay over the year.  相似文献   

4.
An analysis is presented of snapshot data (eastward and northward velocity components: u and v; tracer such as potential temperature: τ) from an eddy-resolving (Rgrid: 1/12°) ocean model experiment, in order to explore a method for improving eddy-permitting model performance. Horizontal 3 × 3 R-grid averages give the eddy-permitting grid (P-grid: 1/4°) variables: 〈u〉, 〈v〉, and 〈τ〉, where 〈〉 denotes the spatial P-grid scale average. The difference between the horizontal tracer flux across the boundary face of a P-grid and that across the corresponding faces of R-grids is estimated as F2E. It is found that the correlations among the gradients of u, v, and τ give a good approximation F2C to the estimated flux F2E. The approximated flux is a function of these gradients and the grid size. A method is presented for implementing the F2C for density to an eddying ocean model as an additional advection. Practical experiments were conducted with a realistic configuration. It is shown that the zonal mean isotherms in the Kuroshio extension region are more flattened in the run using the proposed method than in another run using the conventional horizontal biharmonic operator, suggesting that the additional flux correction leads to an enhancement of sub-basin scale mixing.  相似文献   

5.
黄渤海海域波浪时空变化特征分析   总被引:1,自引:0,他引:1  
本文利用欧洲中期预报中心(ECMWF)第五代再分析数据集(ECMWF Reanalysis v5 ERA5,ERA5),对中国黄渤海海域2000-2019年的波浪进行了统计分析。得到如下的结论:1.黄渤海海区波浪具有明显的季节性,渤海区域有效波高呈现出周边小,中间大的特点;黄海海域有效波高Hs呈现由南向北降低的趋势;研究区域冬季有效波高均值大于其他季节。2.平均周期T的季节分布类似于有效波高的季节均值分布。渤海仅秋冬季T的均值存在大于4s的区域;黄海海域T的季节分布也呈现由南向北递减的趋势,其中长江口外海区域秋冬季T的季节均值可达6s。3.有效波高距平场EOF分解结果显示,第一模态表明了波浪变化具有明显的季节性特征;第二模态反映了季风的季节转换对有效波高的影响;第三模态代表的可能是地形的变化对有效波高变化的影响。4.代表点统计结果显示:整个渤海地区的常浪向为 NNE~NE,强浪向以 NE和 NNE 为主;黄海海域的常浪向为SSE-SE向,强浪向以 N和 SSE 为主。  相似文献   

6.
Okhotsk Sea Intermediate Water (OSIW), the source water for ventilation of North Pacific Intermediate Water, exhibits a multidecadal warming trend. Historical data show that OSIW temperatures increased by 0.28, 0.57, 0.31 and 0.10°C during 1955 to 2003 at potential densities of 26.8, 27.0, 27.2 and 27.4σ θ , at depths of approximately 250, 500, 700 and 900 m, respectively. This rate of warming is much faster than that of the global ocean. This OSIW warming is likely linked to the reduced ventilation of cold Dense Shelf Water associated with brine rejection during sea ice formation.  相似文献   

7.
 Hydrothermal vent fields south of the Garret Fracture zone were sampled for the isotope composition of helium and oxygen ([18O]H2O/[16OH2O). The helium isotopes end-member (3He / 4He=8.3×R a and [4He]≈1.2–2.4×10-5 cm3 STP g-1) is quite similar to other known hydrothermal sites pointing to the homogeneous helium composition of the upper mantle. The δ18O end-member value (δ18O≈0.5–0.6‰) confirms previous suggestions from other sites and from isotope modeling, that hydrothermal fluids are slightly enriched in 18O relative to the ocean as a result of water–rock interactions at high temperature. Received: 11 December 1995/Revision received: 20 December 1996  相似文献   

8.
The ocean is an important sink for carbon and heat, yet high-resolution measurements of biogeochemical properties relevant to global climate change are being made only sporadically in the ocean at present. There is a growing need for automated, real-time, long-term measurements of CO2 in the ocean using a network of sensors, strategically placed on ships, moorings, free-drifting buoys and autonomous remotely operated vehicles. The ground-truthing of new sensor technologies is a vital component of present and future efforts to monitor changes in the ocean carbon cycle and air–sea exchange of CO2.A comparison of a moored Carbon Interface Ocean Atmosphere (CARIOCA) buoy and shipboard fugacity of CO2 (fCO2) measurements was conducted in the western North Atlantic during two extended periods (>1 month) in 1997. The CARIOCA buoy was deployed on the Bermuda Testbed Mooring (BTM), which is located 5 km north of the site of the US Joint Global Ocean Flux Study (JGOFS) Bermuda Atlantic Time-series Study (BATS). The high frequency of sampling revealed that temperature and fCO2 responded to physical forcing by the atmosphere on timescales from diurnal to 4–8 days. Concurrent with the deployments of the CARIOCA buoy, frequent measurements of surface fCO2 were made from the R/V Weatherbird II during opportunistic visits to the BTM and BATS sites, providing a direct calibration of the CARIOCA buoy fCO2 data. Although, the in situ ground-truthing of the CARIOCA buoy was complicated by diurnal processes, sub-mesoscale and fine-scale variability, the CARIOCA buoy fCO2 data was accurate within 3±6 μatm of shipboard fCO2 data for periods up to 50 days. Longer-term assessments were not possible due to the CARIOCA buoy breaking free of the BTM and drifting into waters with different fCO2-temperature properties. Strategies are put forward for future calibration of other in situ sensors.  相似文献   

9.
Hydrographic data collected from Gulf of Aden since 1920 have been compiled to identify and refine the definitions of water masses in the Gulf of Aden (GA) and to describe their spatio-temporal variability. Four water masses have been identified based on their θ-S characteristics. The Red Sea Water (RSW) that flows from the Red Sea is the most prominent water in the GA; this occupies about 37% of the total volume of Gulf of Aden. The Gulf of Aden Surface Water (∼3%) forms as a mixture of local water and the water from western Arabian Sea during winter and Red Sea surface water during summer. The intermediate water, identified as Gulf of Aden Intermediate Water (GAIW), occupies about 9% of the total volume of GA; a characteristic salinity minimum is associated with it at σθ=26.50 kg m−3. The northward spread of sub-tropical subsurface water from the south appears to be the major source of GAIW. The bottom water, named Gulf of Aden Bottom Water, showed the least variability. It was formed due to the mixing of Red Sea Water and water of southern origin. Mixing triangles have been used to analyze the composition of water in the GA.  相似文献   

10.
Three High Frequency (HF) ocean radar stations were installed around the Soya/La Perouse Strait in the Sea of Okhotsk in order to monitor the Soya Warm Current (SWC). The frequency of the HF radar is 13.9 MHz, and the range and azimuth resolutions are 3 km and 5 deg., respectively. The radar covers a range of approximately 70 km from the coast. The surface current velocity observed by the HF radars was compared with data from drifting buoys and shipboard Acoustic Doppler Current Profilers (ADCPs). The current velocity derived from the HF radars shows good agreement with that observed using the drifting buoys. The root-mean-square (rms) differences were found to be less than 20 cm s−1 for the zonal and meridional components in the buoy comparison. The observed current velocity was also found to exhibit reasonable agreement with the shipboard ADCP data. It was shown that the HF radars clearly capture seasonal and short-term variations of the SWC. The velocity of the Soya Warm Current reaches its maximum, approximately 1 m s−1, in summer and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 40 km. The surface transport by the SWC shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records at Wakkanai and Abashiri. Deceased.  相似文献   

11.
To understand the processes transporting nitrate to the surface layer of the western and central equatorial Pacific, we measured the nitrogen isotopic ratio of nitrate (δ 15NO 3 ), which is a very useful tracer of the source of nitrate, above 200 m depth in this region in December 1999. δ 15NO 3 is higher (about 13.0‰) in the surface water than in the subsurface water (where it is about 6.5‰) due to isotopic fractionation during nitrate uptake by phytoplankton. The δ 15NO 3 value has a roughly linear relationship with the natural logarithm of nitrate concentration (ln[NO 3 ]). However, for values above 150 m depth, the intercept of this linear relationship varies with position from east to west. On the other hand, the data at 200 m depth at all observation stations are concentrated around a single point (ln[NO 3 ] = 2.5 and δ 15NO 3 = 6.5‰) and do not fit the linear relationships for the shallower values. To examine the meaning of the observed distributions of δ 15NO 3 and nitrate concentration we developed a box model including nitrogen and nitrogen isotopic cycles. By reproducing the observed relationship between δ 15NO 3 and nitrate concentration using this model we found that most nitrate is transported horizontally from the eastern equatorial Pacific. We also conducted case studies and investigated the effects of differences in pathways of nitrate transport on the distributions of δ 15NO 3 and nitrate concentration. From these studies we concluded that the observed linear relationships between δ 15NO 3 and ln[NO 3 ], having a common slope around 6‰ but different intercepts at each station, are evidence of the significant horizontal transport of nitrate to the surface water in this area.  相似文献   

12.
The autonomous drifting buoys equipped with satellite link turn into one of the most important components of the global system of operative observations of the ocean and the surface layer of the atmosphere. However, on the regional level, the problem of analysis of the surface circulation of waters in the coastal zone and sea straits remains quite urgent because the available drifters cannot be used in this case due to their sizes and long intervals between measurements. We present the results of development and testing of a new drifter system aimed at measuring currents. The system is based on the use of buoys operating at depths less than 1 m. To improve the space-and-time resolution of measurements, the buoys are equipped with receivers of the global positioning system (GPS) and GSM modems for the data transfer via cellular communication networks. The drifter system guarantees the possibility of determination of the coordinates of buoys with a resolution of 3 min in time and 14 m in space. We describe the specific features of the design of the proposed information-and-measuring drifter system and present the first results of application of new buoys called “minidrifters” for the pilot monitoring of currents in the Kerch Strait.  相似文献   

13.
N2 fixation is an important biological process that adds new nitrogen to oceans and plays a key role in modulating the oceanic nitrate inventory. However, it is not known how, when, and where N2 fixation rates have varied in response to past climate changes. This study presents a new record of nitrogen isotopic composition (δ15N) over the last 83 kyr from a sediment core (KH02-4 SUP8) taken in the Sulu Sea in the western equatorial Pacific region; data allow the N2 fixation variability in the sea to be reconstructed. Sediments, sinking, and suspended particulate organic matter (POM) all have lighter isotopic values compared to the δ15N values of substrate nitrate (av. 5.8‰) in North Pacific Intermediate Water. These lighter δ15N values are regarded as reflecting N2 fixation in the Sulu Sea surface water. A δ15N mass balance model shows that N2 fixation rates were significantly enhanced during 54–34 kyr in MIS-3 and MIS-2. It has been speculated that higher interglacial denitrification rates in the Arabian Sea and the eastern tropical Pacific would have markedly decreased the global oceanic N inventory and contributed to the increase in N2 fixation in oligotrophic regions, but such a model was not revealed by our study. It is possible that changes in N2 fixation rates in the Sulu Sea were regional response, and accumulation of phosphate in the surface waters due to enhanced monsoon-driven mixing is thought to have stimulated enhancements of N2 fixation during MIS-3 and MIS-2.  相似文献   

14.
Intensive CTD observations that resolve the mean and tidal components were done with a total of 129 casts in summer of 2001 at Bussol’ Strait. Based on these data and all the available historical data, we have revealed the outflow from Bussol’ Strait to the Pacific and the significant diapycnal mixing in the strait. In the range 27.0−27.3σ θ , the water property in Bussol’ Strait is almost identical to that of the Kuril Basin Water (KBW). The KBW out of Bussol’ Strait forms a water mass front with the East Kamchatka Current Water (EKCW). This front also corresponds to the front of the Oyashio Current. In the lower part of the intermediate layer (27.3−27.6σ θ ), part of the water in the strait is characterized by lower temperature, lower salinity, and higher dissolved oxygen than that of KBW and EKCW, which can be explained only by the diapycnal mixing. The strong diapycnal mixing in the strait can also be shown by the density inversion, occurrence frequency of which corresponds well to the amplitude distribution of the diurnal current. In the density range 26.7−26.8σ θ , the water in Bussol’ Strait has the lowest potential vorticity, suggesting that it is a source region of the low potential vorticity water. Seasonal change of the water can reach up to a density of 26.8σ θ around Bussol’ Strait. This leads us to propose that the combination of winter convection and local tidal mixing leads to effective ventilation of the intermediate layer.  相似文献   

15.
The reproductive cycle of anchovy, Engraulis encrasicolus (L.), was studied from monthly random samples of purse seine catches. A total of 1477 anchovy specimens were collected from January to December 2003 in the Zrmanja River estuary (Novigrad Sea). The analysis was based on the temporal evolution of gonadosomatic index, mass and stage of gonads. The total length of anchovy ranged from 4.5 to 14.5 cm and mass from 0.56 to 19.80 g. Sex ratio was slightly different from 1:1; the females were insignificantly predominated (♂/♀ = 0.99). The period of reproductive activity was from April to September coinciding with the most developed stages of gonads as well as with the highest gonad weights, and gonadosomatic indices. To estimate the length at maturity, a sub sample of 454 anchovy was taken from May to July (peak of anchovy spawning period). The length at which 50% of anchovy were mature (L50) was calculated to be 8.2 cm. The length–weight relationship of anchovy was described by the expression: W = 3.51 × 10−3 LT3.211 (r2 = 0.998). The relationships between total length–standard length and total length–fork length are LT = 1.1405LS + 0.2420 and LT = 1.0425 LF + 0.3944, respectively.  相似文献   

16.
The circulation of intermediate and deep waters in the Philippine Sea west of the Izu-Ogasawara-Mariana-Yap Ridge is estimated with use of an inverse model applied to the World Ocean Circulation Experiment (WOCE) Hydrographic Program data set. Above 1500 m depth, the subtropical gyre is dominant, but the circulation is split in small cells below the thermocline, causing multiple zonal inflows of intermediate waters toward the western boundary. The inflows along 20°N and 26°N carry the North Pacific Intermediate Water (NPIW) of 11 × 109 kg s−1 in total, at the density range of 26.5σθ–36.7σ2 (approximately 500–1500 m depths), 8 × 109 kg s−1 of the NPIW circulate within the subtropical gyre, whereas the rest is conveyed to the tropics and the South China Sea. The inflow south of 15°N carries the Tropical Salinity Minimum water of 35 × 109 kg s−1, nearly half of which return to the east through a narrow undercurrent at 15–17°N, and the rest is transported into the lower part of the North Equatorial Countercurrent. Below 1500 m depth, the deep circulation regime is anti-cyclonic. At the density range of 36.7σ2, – 45.845σ4 (approximately 1500–3500 m depths), deep waters of 17 × 109 kg s−1 flow northward, and three quarters of them return to the east at 16–24°N. The remainder flows further north of 24°N, then turns eastward out of the Philippine Sea, together with a small amount of subarctic-origin North Pacific Deep Water (NPDW) which enters the Philippine Sea through the gap between the Izu Ridge and Ogasawara Ridge. The full-depth structure and transportation of the Kuroshio in total and net are also examined. It is suggested that low potential vorticity of the Subtropical Mode Water is useful for distinguishing the net Kuroshio flow from recirculation flows. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
In this study we used two stable isotopes, δ13C and δ18O, for water mass classification in the coastal region off eastern Hokkaido. δ13C* values, which were corrected for the biological effect, and δ 18O values up to 300 m depth suggested that the isotopic character of the onshore and offshore water in the southern Okhotsk Sea, the Nemuro Strait and the western North Pacific could be explained by the mixing of three source waters: the Oyashio water (OYW), Soya Warm Current water (SWCW) and East Sakhalin Current water (ESCW). In summer, δ 13C*-δ 18O plots indicated mixing between SWCW from the southern Okhotsk Sea and OYW in the Pacific coast of southeastern Hokkaido, while temperature-salinity plots of the onshore water showed minimal difference from the offshore OYW. In winter, on the other hand, the mixed water of ESCW and OYW (or SWCW) appeared in the Pacific coastal region, distributed as cold, low salinity onshore water. Finally, we estimated mixing ratios of OYW, SWCW and ESCW in the coastal region of western North Pacific using their mean values of δ 13C* and δ 18O as endmembers. These results suggest seasonal and yearly changes of water mass combination en route from the southern Okhotsk Sea to the western North Pacific.  相似文献   

18.
Concentration and stable isotopic compositions (δ 18O) of dissolved O2 were measured in seawater samples collected from the Philippine Sea in June 2006. The in-situ O2 consumption rate and the isotopic fractionation factor (α r ) during dissolved O2 consumption were obtained from field observations by applying a vertical one-dimensional advection diffusion model to the deep water mass of about 1000–4000 m. The average O2 consumption rate and α r were, respectively, 0.11 ± 0.07 μmol kg−1yr−1 and 0.990 ± 0.001. These estimated values agree well with values from earlier estimations of Pacific deep water. The in-situ O2 consumption rates are two or more times higher north of 20°N, although the value of α r was not significantly different between the north and south. Its levels varied rapidly in the water mass of less about 2000 m depth. These results suggest that organic matter from the continent imparts a meaningful contribution to the upper water in the northern part of the area; it might produce the strong O2 minimum that is evident in the water mass from about 1000–2000 m in the northern part of the Philippine Sea.  相似文献   

19.
The outflow from the Sea of Okhotsk to the North Pacific is important in characterising the surface-to-intermediate-depth water masses in the Pacific Ocean. The two basins are separated by the Kuril Islands with numerous straits, among which the Bussol and the Kruzenshterna Straits are deeper than 1000 m. The physics governing the transport between the two basins is complicated, but when the semidiurnal and diurnal tides are subtracted, the observed density and velocity structures across the Bussol Strait suggest a significant contribution from geostrophic balance. Using a two-layer model with the interface at 27.5σ θ , part of the upper layer transport that is not driven by tides is estimated using two previously unexplored data sets: outputs from the Ocean General Circulation Model for Earth Simulator (OFES), and historical hydrographic data. The Pacific water flows into the Sea of Okhotsk through the northeastern straits. The greatest inflow is through the Kruzenshtern Strait, but the OFES results show that the contributions from other shallower straits are almost half of the Kruzenshtern inflow. Similarly, the outflow from the Sea of Okhotsk is through the southwestern straits of the Kuril Islands with the largest Bussol Strait contributing 60% of the total outflow. The OFES and hydrographic estimates agree that the exchange is strongest in February to March, with an inflow of about −6 to −12 Sv (negative indicates the flow from the North Pacific, 1 Sv = 106 m3s−1), and an outflow from the Sea of Okhotsk of about +8 to +9 Sv (positive indicates the flow from the Sea of Okhotsk), which is weakest in summer (−3 to +1 Sv through the northeastern straits and +0 to +3 Sv through the southwestern straits). The estimated seasonal variation is consistent with a simple analytic model driven by the difference in sea surface height between the two basins.  相似文献   

20.
The temperature minimum layer, called “dichothermal water”, is a characteristic feature of the North Pacific subarctic gyre. In particular, dichothermal water having a density of approximately 26.6 sigma-theta (σθ), which corresponds to the densest water outcropping in winter in the North Pacific, is seen in the Bering Sea. In order to clarify the water properties, and the area in which and the process by which the dichothermal water is formed, a new seasonal mean gridded climatological dataset with a fine resolution for the Bering Sea and adjacent seas has been prepared using historically accumulated hydrographic data. Although the waters of the Alaskan Stream have temperature minimum layers, their temperature inversions are very weak in climatologies and the core densities of the temperature minimum layers are much lighter than 26.6σθ. On the other hand, in the Bering Sea one can see the robust structure of temperature minimum layers, the core density of the dichothermal water being around 26.6σθ. In addition, it has been found that the properties of the dichothermal water observed in the warming season are almost the same as those in the winter mixed layer. That is, the dichothermal waters are formed in the winter mixed layer in the Bering Sea. Since these waters are found in the Kamchatka Strait, i.e., the main exit of the Bering Sea waters, it can be supposed that the dichothermal waters are exported from the Bering Sea to the Pacific Ocean by the Kamchatka Current. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号